基于单通道心电信号的动态连接卷积神经网络的睡眠-觉醒阶段分类。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Junming Zhang, Hao Dong, Yipei Li, Haitao Wu
{"title":"基于单通道心电信号的动态连接卷积神经网络的睡眠-觉醒阶段分类。","authors":"Junming Zhang, Hao Dong, Yipei Li, Haitao Wu","doi":"10.1080/10255842.2025.2465358","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of sleep medicine, identifying sleep-wake stages is crucial for evaluate of sleep quality. Until now, numerous methods have been proposed for sleep-wake classification. These methods predominantly utilize electroencephalogram (EEG) signals, achieving competitive performance in sleep-wake stage classification. However, acquiring EEG signals is both cumbersome and inconvenient. At the same time, EEG signals are very weak and are easily disturbed. In contrast EEG signal, collecting electrocardiogram (ECG) signals is relatively simple and convenient. Therefore, based on the ECG signals, we propose a simple and effective sleep-wake stages model that can be used for wearable devices. In order to extract multi-scale features of ECG signals, convolutional kernels of different sizes are designed. Then, a novel dynamic connection convolutional neural network (DCCNN) is proposed to classify sleep-wake stages. First, the DCCNN calculates the goodness of feature maps from each layer. Second, according to the goodness of different layers, select the optimal layer to form a residual module with the current layer. The proposed method was tested on sleep data from a publicly accessible databases, namely the MIT-BIH Polysomnographic Database, resulting in an best accuracy of 92.21%. The findings are similar and higher performance to those models trained with EEG signals. Moreover, when compared to state-of-the-art methods, the proposed approach's effectiveness is further demonstrated. In conclusion, this research offers a novel approach for sleep monitoring.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-16"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sleep-wake stages classification based on single channel ECG signals by using a dynamic connection convolutional neural network.\",\"authors\":\"Junming Zhang, Hao Dong, Yipei Li, Haitao Wu\",\"doi\":\"10.1080/10255842.2025.2465358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the field of sleep medicine, identifying sleep-wake stages is crucial for evaluate of sleep quality. Until now, numerous methods have been proposed for sleep-wake classification. These methods predominantly utilize electroencephalogram (EEG) signals, achieving competitive performance in sleep-wake stage classification. However, acquiring EEG signals is both cumbersome and inconvenient. At the same time, EEG signals are very weak and are easily disturbed. In contrast EEG signal, collecting electrocardiogram (ECG) signals is relatively simple and convenient. Therefore, based on the ECG signals, we propose a simple and effective sleep-wake stages model that can be used for wearable devices. In order to extract multi-scale features of ECG signals, convolutional kernels of different sizes are designed. Then, a novel dynamic connection convolutional neural network (DCCNN) is proposed to classify sleep-wake stages. First, the DCCNN calculates the goodness of feature maps from each layer. Second, according to the goodness of different layers, select the optimal layer to form a residual module with the current layer. The proposed method was tested on sleep data from a publicly accessible databases, namely the MIT-BIH Polysomnographic Database, resulting in an best accuracy of 92.21%. The findings are similar and higher performance to those models trained with EEG signals. Moreover, when compared to state-of-the-art methods, the proposed approach's effectiveness is further demonstrated. In conclusion, this research offers a novel approach for sleep monitoring.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2465358\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2465358","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在睡眠医学领域,睡眠-觉醒阶段的确定是评价睡眠质量的关键。到目前为止,已经提出了许多方法来进行睡眠-觉醒分类。这些方法主要利用脑电图(EEG)信号,在睡眠-觉醒阶段分类中取得了较好的表现。然而,脑电信号的获取既繁琐又不方便。同时,脑电图信号非常微弱,容易受到干扰。与脑电图信号相比,心电图信号的采集相对简单方便。因此,基于心电信号,我们提出了一种简单有效的睡眠-觉醒阶段模型,可用于可穿戴设备。为了提取心电信号的多尺度特征,设计了不同大小的卷积核。然后,提出了一种新的动态连接卷积神经网络(DCCNN)对睡眠-觉醒阶段进行分类。首先,DCCNN计算每层特征映射的优度。其次,根据不同层的优劣,选择最优层与当前层组成残差模块。该方法在麻省理工学院-波黑多导睡眠图数据库(MIT-BIH Polysomnographic Database)的睡眠数据上进行了测试,准确率最高为92.21%。结果与用脑电图信号训练的模型相似,且性能更高。此外,当与最先进的方法进行比较时,进一步证明了该方法的有效性。总之,这项研究为睡眠监测提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sleep-wake stages classification based on single channel ECG signals by using a dynamic connection convolutional neural network.

In the field of sleep medicine, identifying sleep-wake stages is crucial for evaluate of sleep quality. Until now, numerous methods have been proposed for sleep-wake classification. These methods predominantly utilize electroencephalogram (EEG) signals, achieving competitive performance in sleep-wake stage classification. However, acquiring EEG signals is both cumbersome and inconvenient. At the same time, EEG signals are very weak and are easily disturbed. In contrast EEG signal, collecting electrocardiogram (ECG) signals is relatively simple and convenient. Therefore, based on the ECG signals, we propose a simple and effective sleep-wake stages model that can be used for wearable devices. In order to extract multi-scale features of ECG signals, convolutional kernels of different sizes are designed. Then, a novel dynamic connection convolutional neural network (DCCNN) is proposed to classify sleep-wake stages. First, the DCCNN calculates the goodness of feature maps from each layer. Second, according to the goodness of different layers, select the optimal layer to form a residual module with the current layer. The proposed method was tested on sleep data from a publicly accessible databases, namely the MIT-BIH Polysomnographic Database, resulting in an best accuracy of 92.21%. The findings are similar and higher performance to those models trained with EEG signals. Moreover, when compared to state-of-the-art methods, the proposed approach's effectiveness is further demonstrated. In conclusion, this research offers a novel approach for sleep monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信