Hilbert空间算子的范数不等式及其应用

IF 1.1 3区 数学 Q1 MATHEMATICS
Pintu Bhunia
{"title":"Hilbert空间算子的范数不等式及其应用","authors":"Pintu Bhunia","doi":"10.1016/j.laa.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>Several unitarily invariant norm inequalities and numerical radius inequalities for Hilbert space operators are studied. We investigate some necessary and sufficient conditions for the parallelism of two bounded operators. For a finite rank operator <em>A</em>, it is shown that<span><span><span><math><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub><mo>≤</mo><msup><mrow><mo>(</mo><mrow><mi>rank</mi></mrow><mspace></mspace><mi>A</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mi>p</mi></mrow></msup><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub><mo>≤</mo><msup><mrow><mo>(</mo><mrow><mi>rank</mi></mrow><mspace></mspace><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>2</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>,</mo><mspace></mspace><mrow><mtext>for all </mtext><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span></span></span> where <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the Schatten <em>p</em>-norm. If <span><math><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>}</mo></math></span> is a listing of all non-zero eigenvalues (with multiplicity) of a compact operator <em>A</em>, then we show that<span><span><span><math><mrow><munder><mo>∑</mo><mrow><mi>n</mi></mrow></munder><msup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mo>‖</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>‖</mo></mrow><mrow><mi>p</mi><mo>/</mo><mn>2</mn></mrow><mrow><mi>p</mi><mo>/</mo><mn>2</mn></mrow></msubsup><mo>,</mo><mspace></mspace><mrow><mtext>for all </mtext><mi>p</mi><mo>≥</mo><mn>2</mn></mrow></mrow></math></span></span></span> which improves the classical Weyl's inequality <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>≤</mo><msubsup><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> [Proc. Nat. Acad. Sci. USA 1949]. For an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix <em>A</em>, we show that the function <span><math><mi>p</mi><mo>→</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> is monotone increasing on <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, complementing the well known decreasing nature of <span><math><mi>p</mi><mo>→</mo><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div><div>As an application of these inequalities, we provide an upper bound for the sum of the absolute values of the zeros of a complex polynomial. As another application we provide a refined upper bound for the energy of a graph <em>G</em>, namely, <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mn>2</mn><mi>m</mi><mrow><mo>(</mo><mrow><mi>rank Adj</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></msqrt></math></span>, where <em>m</em> is the number of edges, improving on a bound by McClelland in 1971.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"711 ","pages":"Pages 40-67"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm inequalities for Hilbert space operators with applications\",\"authors\":\"Pintu Bhunia\",\"doi\":\"10.1016/j.laa.2025.02.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several unitarily invariant norm inequalities and numerical radius inequalities for Hilbert space operators are studied. We investigate some necessary and sufficient conditions for the parallelism of two bounded operators. For a finite rank operator <em>A</em>, it is shown that<span><span><span><math><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub><mo>≤</mo><msup><mrow><mo>(</mo><mrow><mi>rank</mi></mrow><mspace></mspace><mi>A</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn><mi>p</mi></mrow></msup><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>2</mn><mi>p</mi></mrow></msub><mo>≤</mo><msup><mrow><mo>(</mo><mrow><mi>rank</mi></mrow><mspace></mspace><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>2</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>,</mo><mspace></mspace><mrow><mtext>for all </mtext><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span></span></span> where <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the Schatten <em>p</em>-norm. If <span><math><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>}</mo></math></span> is a listing of all non-zero eigenvalues (with multiplicity) of a compact operator <em>A</em>, then we show that<span><span><span><math><mrow><munder><mo>∑</mo><mrow><mi>n</mi></mrow></munder><msup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msubsup><mrow><mo>‖</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>‖</mo></mrow><mrow><mi>p</mi><mo>/</mo><mn>2</mn></mrow><mrow><mi>p</mi><mo>/</mo><mn>2</mn></mrow></msubsup><mo>,</mo><mspace></mspace><mrow><mtext>for all </mtext><mi>p</mi><mo>≥</mo><mn>2</mn></mrow></mrow></math></span></span></span> which improves the classical Weyl's inequality <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>≤</mo><msubsup><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> [Proc. Nat. Acad. Sci. USA 1949]. For an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix <em>A</em>, we show that the function <span><math><mi>p</mi><mo>→</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span> is monotone increasing on <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, complementing the well known decreasing nature of <span><math><mi>p</mi><mo>→</mo><msub><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div><div>As an application of these inequalities, we provide an upper bound for the sum of the absolute values of the zeros of a complex polynomial. As another application we provide a refined upper bound for the energy of a graph <em>G</em>, namely, <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mn>2</mn><mi>m</mi><mrow><mo>(</mo><mrow><mi>rank Adj</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></msqrt></math></span>, where <em>m</em> is the number of edges, improving on a bound by McClelland in 1971.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"711 \",\"pages\":\"Pages 40-67\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525000734\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000734","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了Hilbert空间算子的几个酉不变范数不等式和数值半径不等式。研究了两个有界算子并行性的充分必要条件。对于有限秩算子a,证明了‖a‖p≤(rankA)1/2p‖a‖2p≤(rankA)(2p−1)/2p2‖a‖2p2,对于所有p≥1,其中‖⋅‖p为Schatten p范数。如果{λn(A)}是紧算子A的所有非零特征值(具有多重性)的列表,那么我们证明∑n|λn(A)|p≤12‖A‖pp+12‖A2‖p/2p/2,对于所有p≥2,它改进了经典Weyl不等式∑n|λn(A)|p≤‖A‖pp [Proc. Nat. Acad. Sci]。美国1949]。对于n×n矩阵A,我们证明了函数p→n−1/p‖A‖p在p≥1时是单调递增的,补充了众所周知的p→‖A‖p的递减性质。作为这些不等式的一个应用,我们给出了一个复多项式的零点绝对值和的上界。作为另一个应用,我们为图G的能量提供了一个改进的上界,即E(G)≤2m(秩Adj(G)),其中m为边数,改进了McClelland在1971年提出的一个上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Norm inequalities for Hilbert space operators with applications
Several unitarily invariant norm inequalities and numerical radius inequalities for Hilbert space operators are studied. We investigate some necessary and sufficient conditions for the parallelism of two bounded operators. For a finite rank operator A, it is shown thatAp(rankA)1/2pA2p(rankA)(2p1)/2p2A2p2,for all p1 where p is the Schatten p-norm. If {λn(A)} is a listing of all non-zero eigenvalues (with multiplicity) of a compact operator A, then we show thatn|λn(A)|p12App+12A2p/2p/2,for all p2 which improves the classical Weyl's inequality n|λn(A)|pApp [Proc. Nat. Acad. Sci. USA 1949]. For an n×n matrix A, we show that the function pn1/pAp is monotone increasing on p1, complementing the well known decreasing nature of pAp.
As an application of these inequalities, we provide an upper bound for the sum of the absolute values of the zeros of a complex polynomial. As another application we provide a refined upper bound for the energy of a graph G, namely, E(G)2m(rank Adj(G)), where m is the number of edges, improving on a bound by McClelland in 1971.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信