Dake Song , Jingyu Qi , Yingying Zhang , Ruixia Liu , Min Wang , Xinshang Wang , Yumei Wu , Xubo Li , Kun Zhang , Shuibing Liu
{"title":"适度紫外线照射通过激活前脑皮质-基底外侧杏仁核通路,改善慢性应激诱发的焦虑和社交障碍","authors":"Dake Song , Jingyu Qi , Yingying Zhang , Ruixia Liu , Min Wang , Xinshang Wang , Yumei Wu , Xubo Li , Kun Zhang , Shuibing Liu","doi":"10.1016/j.brainresbull.2025.111260","DOIUrl":null,"url":null,"abstract":"<div><div>Ultraviolet radiation B (UVB), the most biologically active ultraviolet ray in sunlight, exert broad effects on physiological and behavioral functions, including circadian rhythm, mood, and cognition. However, its underlying mechanisms are still unknown. In this study, in order to verify effects of UVB on anxiety and social behaviors, C57BL/6 mice receiving 2 h UVB exposure after chronic restraint stress were used. UVB exposure improved anxiety-like behaviors and social activities in normal and restraint stressed mice. Meanwhile, UVB exposure increased the neural excitability in mPFC according to cFos staining and electrophysiology results. And benefits of UVB exposure could be blocked by chemogenetical inhibition of mPFC or inhibiting mPFC to basal lateral amygdala (BLA) pathway. In conclusion, we identify UVB exposure ameliorate chronic stress-induced anxiety and social impairment by activating mPFC to BLA pathway. The series of research may lead to the development of UVB as a novel therapeutic approach for treating anxiety and social avoidance in the future.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"222 ","pages":"Article 111260"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moderate UVB exposure ameliorate chronic stress-induced anxiety and social impairment by activating mPFC to basal lateral amygdala pathway\",\"authors\":\"Dake Song , Jingyu Qi , Yingying Zhang , Ruixia Liu , Min Wang , Xinshang Wang , Yumei Wu , Xubo Li , Kun Zhang , Shuibing Liu\",\"doi\":\"10.1016/j.brainresbull.2025.111260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultraviolet radiation B (UVB), the most biologically active ultraviolet ray in sunlight, exert broad effects on physiological and behavioral functions, including circadian rhythm, mood, and cognition. However, its underlying mechanisms are still unknown. In this study, in order to verify effects of UVB on anxiety and social behaviors, C57BL/6 mice receiving 2 h UVB exposure after chronic restraint stress were used. UVB exposure improved anxiety-like behaviors and social activities in normal and restraint stressed mice. Meanwhile, UVB exposure increased the neural excitability in mPFC according to cFos staining and electrophysiology results. And benefits of UVB exposure could be blocked by chemogenetical inhibition of mPFC or inhibiting mPFC to basal lateral amygdala (BLA) pathway. In conclusion, we identify UVB exposure ameliorate chronic stress-induced anxiety and social impairment by activating mPFC to BLA pathway. The series of research may lead to the development of UVB as a novel therapeutic approach for treating anxiety and social avoidance in the future.</div></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"222 \",\"pages\":\"Article 111260\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923025000723\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000723","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Moderate UVB exposure ameliorate chronic stress-induced anxiety and social impairment by activating mPFC to basal lateral amygdala pathway
Ultraviolet radiation B (UVB), the most biologically active ultraviolet ray in sunlight, exert broad effects on physiological and behavioral functions, including circadian rhythm, mood, and cognition. However, its underlying mechanisms are still unknown. In this study, in order to verify effects of UVB on anxiety and social behaviors, C57BL/6 mice receiving 2 h UVB exposure after chronic restraint stress were used. UVB exposure improved anxiety-like behaviors and social activities in normal and restraint stressed mice. Meanwhile, UVB exposure increased the neural excitability in mPFC according to cFos staining and electrophysiology results. And benefits of UVB exposure could be blocked by chemogenetical inhibition of mPFC or inhibiting mPFC to basal lateral amygdala (BLA) pathway. In conclusion, we identify UVB exposure ameliorate chronic stress-induced anxiety and social impairment by activating mPFC to BLA pathway. The series of research may lead to the development of UVB as a novel therapeutic approach for treating anxiety and social avoidance in the future.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.