快速和公平的分割计算加速深度神经网络(DNN)推理

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dongju Cha , Jaewook Lee , Daeyoung Jung, Sangheon Pack
{"title":"快速和公平的分割计算加速深度神经网络(DNN)推理","authors":"Dongju Cha ,&nbsp;Jaewook Lee ,&nbsp;Daeyoung Jung,&nbsp;Sangheon Pack","doi":"10.1016/j.icte.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional split computing approaches for AI models that generate large outputs suffer from long transmission and inference times. Due to the limited resources of the edge server and selfish MDs, some MDs cannot offload their tasks and sacrifice their performance. To address these issues, we formulate an optimization problem to determine one or two split points that minimize inference latency while ensuring fair offloading among MDs. Additionally, we devise a low-complexity heuristic algorithm called fast and fair split computing (F2SC). Evaluation results demonstrate that F2SC reduces inference time by <span><math><mrow><mn>3</mn><mo>.</mo><mn>8</mn><mtext>%</mtext><mo>∼</mo><mn>20</mn><mo>.</mo><mn>1</mn><mtext>%</mtext></mrow></math></span> compared to the conventional approaches while maintaining fairness.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 1","pages":"Pages 47-52"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and fair split computing for accelerating deep neural network (DNN) inference\",\"authors\":\"Dongju Cha ,&nbsp;Jaewook Lee ,&nbsp;Daeyoung Jung,&nbsp;Sangheon Pack\",\"doi\":\"10.1016/j.icte.2024.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional split computing approaches for AI models that generate large outputs suffer from long transmission and inference times. Due to the limited resources of the edge server and selfish MDs, some MDs cannot offload their tasks and sacrifice their performance. To address these issues, we formulate an optimization problem to determine one or two split points that minimize inference latency while ensuring fair offloading among MDs. Additionally, we devise a low-complexity heuristic algorithm called fast and fair split computing (F2SC). Evaluation results demonstrate that F2SC reduces inference time by <span><math><mrow><mn>3</mn><mo>.</mo><mn>8</mn><mtext>%</mtext><mo>∼</mo><mn>20</mn><mo>.</mo><mn>1</mn><mtext>%</mtext></mrow></math></span> compared to the conventional approaches while maintaining fairness.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 1\",\"pages\":\"Pages 47-52\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524001164\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001164","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对于产生大量输出的人工智能模型,传统的分割计算方法存在传输和推理时间长的问题。由于边缘服务器的资源有限和MDs的自私自利,一些MDs无法卸载自己的任务,从而牺牲性能。为了解决这些问题,我们制定了一个优化问题来确定一个或两个分裂点,以最大限度地减少推理延迟,同时确保MDs之间的公平卸载。此外,我们还设计了一种低复杂度的启发式算法,称为快速公平分割计算(F2SC)。评估结果表明,与传统方法相比,F2SC在保持公平性的同时减少了3.8% ~ 20.1%的推理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and fair split computing for accelerating deep neural network (DNN) inference
Conventional split computing approaches for AI models that generate large outputs suffer from long transmission and inference times. Due to the limited resources of the edge server and selfish MDs, some MDs cannot offload their tasks and sacrifice their performance. To address these issues, we formulate an optimization problem to determine one or two split points that minimize inference latency while ensuring fair offloading among MDs. Additionally, we devise a low-complexity heuristic algorithm called fast and fair split computing (F2SC). Evaluation results demonstrate that F2SC reduces inference time by 3.8%20.1% compared to the conventional approaches while maintaining fairness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信