基于增强目标数据学习的跨域自动驾驶视觉分割

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chaoyu Rao , Xiaoyong Fang , Yunzhe Zhang , Wanshu Fan , Dongsheng Zhou
{"title":"基于增强目标数据学习的跨域自动驾驶视觉分割","authors":"Chaoyu Rao ,&nbsp;Xiaoyong Fang ,&nbsp;Yunzhe Zhang ,&nbsp;Wanshu Fan ,&nbsp;Dongsheng Zhou","doi":"10.1016/j.icte.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>Within the broader context of Information and Communications Technology (ICT), the quest for reliable and scalable visual segmentation methods poses significant challenges, particularly in autonomous driving, where real-world scene complexity requires advanced solutions. To address data scarcity and improve segmentation performance, we propose a novel unsupervised domain adaptation (UDA) approach that enhances target domain learning. Our method introduces multiple perturbations consistency, leveraging spatial context within the target domain to improve recognition. By applying perturbations at input and feature levels and using a consistency loss, we enhance contextual learning. Additionally, a weight mapping technique reduces the impact of detrimental source domain information. Experimental results demonstrate that our approach outperforms baseline methods on the GTAV<span><math><mo>→</mo></math></span>Cityscapes and SYNTHIA<span><math><mo>→</mo></math></span>Cityscapes datasets.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 1","pages":"Pages 53-58"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-domain autonomous driving visual segmentation based on enhanced target data learning\",\"authors\":\"Chaoyu Rao ,&nbsp;Xiaoyong Fang ,&nbsp;Yunzhe Zhang ,&nbsp;Wanshu Fan ,&nbsp;Dongsheng Zhou\",\"doi\":\"10.1016/j.icte.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Within the broader context of Information and Communications Technology (ICT), the quest for reliable and scalable visual segmentation methods poses significant challenges, particularly in autonomous driving, where real-world scene complexity requires advanced solutions. To address data scarcity and improve segmentation performance, we propose a novel unsupervised domain adaptation (UDA) approach that enhances target domain learning. Our method introduces multiple perturbations consistency, leveraging spatial context within the target domain to improve recognition. By applying perturbations at input and feature levels and using a consistency loss, we enhance contextual learning. Additionally, a weight mapping technique reduces the impact of detrimental source domain information. Experimental results demonstrate that our approach outperforms baseline methods on the GTAV<span><math><mo>→</mo></math></span>Cityscapes and SYNTHIA<span><math><mo>→</mo></math></span>Cityscapes datasets.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 1\",\"pages\":\"Pages 53-58\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524001231\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001231","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在信息和通信技术(ICT)的广泛背景下,对可靠和可扩展的视觉分割方法的追求带来了重大挑战,特别是在自动驾驶领域,其中现实世界场景的复杂性需要先进的解决方案。为了解决数据稀缺性和提高分割性能,我们提出了一种新的无监督域自适应(UDA)方法来增强目标域学习。我们的方法引入了多重扰动一致性,利用目标域内的空间上下文来提高识别。通过在输入和特征级别应用扰动以及使用一致性损失,我们增强了上下文学习。此外,权重映射技术减少了有害的源域信息的影响。实验结果表明,该方法在GTAV→cityscape和SYNTHIA→cityscape数据集上优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-domain autonomous driving visual segmentation based on enhanced target data learning
Within the broader context of Information and Communications Technology (ICT), the quest for reliable and scalable visual segmentation methods poses significant challenges, particularly in autonomous driving, where real-world scene complexity requires advanced solutions. To address data scarcity and improve segmentation performance, we propose a novel unsupervised domain adaptation (UDA) approach that enhances target domain learning. Our method introduces multiple perturbations consistency, leveraging spatial context within the target domain to improve recognition. By applying perturbations at input and feature levels and using a consistency loss, we enhance contextual learning. Additionally, a weight mapping technique reduces the impact of detrimental source domain information. Experimental results demonstrate that our approach outperforms baseline methods on the GTAVCityscapes and SYNTHIACityscapes datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信