机器学习驱动优化双模比色/SERS横向流动免疫分析法用于超灵敏霉菌毒素检测。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Analytical Chemistry Pub Date : 2025-03-11 Epub Date: 2025-02-14 DOI:10.1021/acs.analchem.4c06582
Boyang Sun, Haiyu Wu, Tianrui Fang, Zihan Wang, Ke Xu, Huiqi Yan, Jinbo Cao, Ying Wang, Li Wang
{"title":"机器学习驱动优化双模比色/SERS横向流动免疫分析法用于超灵敏霉菌毒素检测。","authors":"Boyang Sun, Haiyu Wu, Tianrui Fang, Zihan Wang, Ke Xu, Huiqi Yan, Jinbo Cao, Ying Wang, Li Wang","doi":"10.1021/acs.analchem.4c06582","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting and quantifying mycotoxins using LFIA are challenging due to the need for high sensitivity and accuracy. To address this, a dual-mode colorimetric-SERS LFIA was developed for detecting deoxynivalenol (DON). Rhodium nanocores provided strong plasmonic properties as the SERS substrate, while silver nanoparticles created electromagnetic \"hotspots\" to enhance signal sensitivity. Finite element modeling optimized the electromagnetic field intensity, and Prussian blue generated a distinct signal at 2156 cm<sup>-1</sup>, effectively reducing background interference. This dual-mode LFIA achieved a detection limit of 4.21 pg/mL, 37 times lower than that of colloidal gold-based LFIA (0.156 ng/mL). Machine learning algorithms, including ANN and KNN, enabled precise classification and quantification of contamination, achieving 98.8% classification accuracy and an MSE of 0.57. These results underscore the platform's potential for analyzing harmful substances in complex matrices and demonstrate the important role of machine learning-enhanced nanosensors in advancing detection technologies.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":"4824-4831"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Mode Colorimetric/SERS Lateral Flow Immunoassay with Machine Learning-Driven Optimization for Ultrasensitive Mycotoxin Detection.\",\"authors\":\"Boyang Sun, Haiyu Wu, Tianrui Fang, Zihan Wang, Ke Xu, Huiqi Yan, Jinbo Cao, Ying Wang, Li Wang\",\"doi\":\"10.1021/acs.analchem.4c06582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting and quantifying mycotoxins using LFIA are challenging due to the need for high sensitivity and accuracy. To address this, a dual-mode colorimetric-SERS LFIA was developed for detecting deoxynivalenol (DON). Rhodium nanocores provided strong plasmonic properties as the SERS substrate, while silver nanoparticles created electromagnetic \\\"hotspots\\\" to enhance signal sensitivity. Finite element modeling optimized the electromagnetic field intensity, and Prussian blue generated a distinct signal at 2156 cm<sup>-1</sup>, effectively reducing background interference. This dual-mode LFIA achieved a detection limit of 4.21 pg/mL, 37 times lower than that of colloidal gold-based LFIA (0.156 ng/mL). Machine learning algorithms, including ANN and KNN, enabled precise classification and quantification of contamination, achieving 98.8% classification accuracy and an MSE of 0.57. These results underscore the platform's potential for analyzing harmful substances in complex matrices and demonstrate the important role of machine learning-enhanced nanosensors in advancing detection technologies.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\" \",\"pages\":\"4824-4831\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06582\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06582","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于需要高灵敏度和准确性,使用LFIA检测和定量真菌毒素具有挑战性。为了解决这个问题,开发了一种双模比色法- sers LFIA用于检测脱氧雪腐镰刀菌醇(DON)。铑纳米核作为SERS衬底提供了强大的等离子体特性,而银纳米核产生了电磁“热点”以提高信号灵敏度。有限元建模优化了电磁场强度,普鲁士蓝在2156 cm-1处产生了清晰的信号,有效降低了背景干扰。双模LFIA的检出限为4.21 pg/mL,比胶体金LFIA (0.156 ng/mL)低37倍。包括ANN和KNN在内的机器学习算法实现了对污染的精确分类和量化,分类准确率达到98.8%,MSE为0.57。这些结果强调了该平台在分析复杂矩阵中有害物质方面的潜力,并证明了机器学习增强的纳米传感器在推进检测技术方面的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Mode Colorimetric/SERS Lateral Flow Immunoassay with Machine Learning-Driven Optimization for Ultrasensitive Mycotoxin Detection.

Dual-Mode Colorimetric/SERS Lateral Flow Immunoassay with Machine Learning-Driven Optimization for Ultrasensitive Mycotoxin Detection.

Detecting and quantifying mycotoxins using LFIA are challenging due to the need for high sensitivity and accuracy. To address this, a dual-mode colorimetric-SERS LFIA was developed for detecting deoxynivalenol (DON). Rhodium nanocores provided strong plasmonic properties as the SERS substrate, while silver nanoparticles created electromagnetic "hotspots" to enhance signal sensitivity. Finite element modeling optimized the electromagnetic field intensity, and Prussian blue generated a distinct signal at 2156 cm-1, effectively reducing background interference. This dual-mode LFIA achieved a detection limit of 4.21 pg/mL, 37 times lower than that of colloidal gold-based LFIA (0.156 ng/mL). Machine learning algorithms, including ANN and KNN, enabled precise classification and quantification of contamination, achieving 98.8% classification accuracy and an MSE of 0.57. These results underscore the platform's potential for analyzing harmful substances in complex matrices and demonstrate the important role of machine learning-enhanced nanosensors in advancing detection technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信