Chenyang Lu, Samantha Nelson, Gabriela Coy, Chris Neumann, Elizabeth I Parkinson, Christopher A Rice
{"title":"受环肽天然产物启发的自由生活变形虫 Balamuthia mandrillaris 抑制剂。","authors":"Chenyang Lu, Samantha Nelson, Gabriela Coy, Chris Neumann, Elizabeth I Parkinson, Christopher A Rice","doi":"10.1021/acs.jnatprod.4c00834","DOIUrl":null,"url":null,"abstract":"<p><p><i>Balamuthia mandrillaris</i> is a pathogenic free-living amoeba (pFLA) that can cause infection of the central nervous system (CNS), called <i>Balamuthia</i> amoebic encephalitis (BAE), as well as cutaneous and systemic diseases. Patients infected with <i>B. mandrillaris</i> have a high mortality rate due to a lack of effective treatments. A nonoptimized antimicrobial drug regimen is typically recommended; however, it has poor antiparasitic activity and can cause various and severe side effects. Cyclic peptides exhibit a broad spectrum of antimicrobial activities but are underexplored for their antiamoebic activity. In this study, we evaluated the anti-<i>B. mandrillaris</i> effect of Synthetic Natural Product Inspired Cyclic Peptides (SNaPP) mined from ∼500 biosynthetic gene clusters of various bacterial species. The predicted natural product-43 (pNP-43; BICyP1), identified from the SNaPP library, and its derivates displayed a significant inhibition against <i>B. mandrillaris</i> trophozoites, with five pNPs having IC<sub>50</sub>s ≤ 5 μM. Furthermore, all hit natural product inspired peptides demonstrated minimal to no hemolytic and cytotoxic effects on human red blood cells (RBCs) and immortalized human carcinoma cells, respectfully. Our study is the first to demonstrate the anti-<i>B. mandrillaris</i> effects of cyclic peptides, offering a promising new direction for drug development.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic Peptide Natural Product Inspired Inhibitors of the Free-Living Amoeba <i>Balamuthia mandrillaris</i>.\",\"authors\":\"Chenyang Lu, Samantha Nelson, Gabriela Coy, Chris Neumann, Elizabeth I Parkinson, Christopher A Rice\",\"doi\":\"10.1021/acs.jnatprod.4c00834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Balamuthia mandrillaris</i> is a pathogenic free-living amoeba (pFLA) that can cause infection of the central nervous system (CNS), called <i>Balamuthia</i> amoebic encephalitis (BAE), as well as cutaneous and systemic diseases. Patients infected with <i>B. mandrillaris</i> have a high mortality rate due to a lack of effective treatments. A nonoptimized antimicrobial drug regimen is typically recommended; however, it has poor antiparasitic activity and can cause various and severe side effects. Cyclic peptides exhibit a broad spectrum of antimicrobial activities but are underexplored for their antiamoebic activity. In this study, we evaluated the anti-<i>B. mandrillaris</i> effect of Synthetic Natural Product Inspired Cyclic Peptides (SNaPP) mined from ∼500 biosynthetic gene clusters of various bacterial species. The predicted natural product-43 (pNP-43; BICyP1), identified from the SNaPP library, and its derivates displayed a significant inhibition against <i>B. mandrillaris</i> trophozoites, with five pNPs having IC<sub>50</sub>s ≤ 5 μM. Furthermore, all hit natural product inspired peptides demonstrated minimal to no hemolytic and cytotoxic effects on human red blood cells (RBCs) and immortalized human carcinoma cells, respectfully. Our study is the first to demonstrate the anti-<i>B. mandrillaris</i> effects of cyclic peptides, offering a promising new direction for drug development.</p>\",\"PeriodicalId\":47,\"journal\":{\"name\":\"Journal of Natural Products \",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Products \",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jnatprod.4c00834\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00834","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Cyclic Peptide Natural Product Inspired Inhibitors of the Free-Living Amoeba Balamuthia mandrillaris.
Balamuthia mandrillaris is a pathogenic free-living amoeba (pFLA) that can cause infection of the central nervous system (CNS), called Balamuthia amoebic encephalitis (BAE), as well as cutaneous and systemic diseases. Patients infected with B. mandrillaris have a high mortality rate due to a lack of effective treatments. A nonoptimized antimicrobial drug regimen is typically recommended; however, it has poor antiparasitic activity and can cause various and severe side effects. Cyclic peptides exhibit a broad spectrum of antimicrobial activities but are underexplored for their antiamoebic activity. In this study, we evaluated the anti-B. mandrillaris effect of Synthetic Natural Product Inspired Cyclic Peptides (SNaPP) mined from ∼500 biosynthetic gene clusters of various bacterial species. The predicted natural product-43 (pNP-43; BICyP1), identified from the SNaPP library, and its derivates displayed a significant inhibition against B. mandrillaris trophozoites, with five pNPs having IC50s ≤ 5 μM. Furthermore, all hit natural product inspired peptides demonstrated minimal to no hemolytic and cytotoxic effects on human red blood cells (RBCs) and immortalized human carcinoma cells, respectfully. Our study is the first to demonstrate the anti-B. mandrillaris effects of cyclic peptides, offering a promising new direction for drug development.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.