数据驱动、物理知情的电网调度决策方法

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS
Kai Sun , Dahai Zhang , Jiye Wang , Wenbo Mao
{"title":"数据驱动、物理知情的电网调度决策方法","authors":"Kai Sun ,&nbsp;Dahai Zhang ,&nbsp;Jiye Wang ,&nbsp;Wenbo Mao","doi":"10.1016/j.segan.2025.101644","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an innovative approach, namely the Action Generation Network (AG-Net), designed for power system Security Constrained Economic Dispatch (SCED). In contrast to purely data-driven methodologies, our proposal incorporates a Physical Information Judgment Network (PIJ-Net), effectively integrating essential physical information into the model. This strategy simplifies the economic dispatch model's intricacies while facilitating the network's grasp of the model's underlying physical dynamics. The collaborative operation of these two networks is geared towards achieving highly accurate decision-making. Notably, experimental evaluations conducted on the SG-126 bus system demonstrate that our proposed method surpasses both model-based and neural network relaxed solutions. The results highlight the method's capacity to deliver more dependable and efficient dispatch decisions. This underscores the significance of marrying data-driven approaches with physical insights for enhanced performance in power system economic dispatch.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"42 ","pages":"Article 101644"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven and physically informed power grid dispatch decision-making method\",\"authors\":\"Kai Sun ,&nbsp;Dahai Zhang ,&nbsp;Jiye Wang ,&nbsp;Wenbo Mao\",\"doi\":\"10.1016/j.segan.2025.101644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces an innovative approach, namely the Action Generation Network (AG-Net), designed for power system Security Constrained Economic Dispatch (SCED). In contrast to purely data-driven methodologies, our proposal incorporates a Physical Information Judgment Network (PIJ-Net), effectively integrating essential physical information into the model. This strategy simplifies the economic dispatch model's intricacies while facilitating the network's grasp of the model's underlying physical dynamics. The collaborative operation of these two networks is geared towards achieving highly accurate decision-making. Notably, experimental evaluations conducted on the SG-126 bus system demonstrate that our proposed method surpasses both model-based and neural network relaxed solutions. The results highlight the method's capacity to deliver more dependable and efficient dispatch decisions. This underscores the significance of marrying data-driven approaches with physical insights for enhanced performance in power system economic dispatch.</div></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":\"42 \",\"pages\":\"Article 101644\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467725000268\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725000268","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种针对电力系统安全约束经济调度的创新方法——行动生成网络。与纯粹的数据驱动方法相比,我们的建议包含了一个物理信息判断网络(PIJ-Net),有效地将基本的物理信息集成到模型中。这种策略简化了经济调度模型的复杂性,同时促进了网络对模型潜在物理动态的掌握。这两个网络的协同运行旨在实现高度准确的决策。值得注意的是,在SG-126总线系统上进行的实验评估表明,我们提出的方法优于基于模型和神经网络放松的解决方案。结果表明,该方法能够提供更可靠、更有效的调度决策。这强调了将数据驱动方法与物理洞察相结合,以提高电力系统经济调度性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven and physically informed power grid dispatch decision-making method
This paper introduces an innovative approach, namely the Action Generation Network (AG-Net), designed for power system Security Constrained Economic Dispatch (SCED). In contrast to purely data-driven methodologies, our proposal incorporates a Physical Information Judgment Network (PIJ-Net), effectively integrating essential physical information into the model. This strategy simplifies the economic dispatch model's intricacies while facilitating the network's grasp of the model's underlying physical dynamics. The collaborative operation of these two networks is geared towards achieving highly accurate decision-making. Notably, experimental evaluations conducted on the SG-126 bus system demonstrate that our proposed method surpasses both model-based and neural network relaxed solutions. The results highlight the method's capacity to deliver more dependable and efficient dispatch decisions. This underscores the significance of marrying data-driven approaches with physical insights for enhanced performance in power system economic dispatch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信