用可穿戴捕获系统评估全膝关节置换术前后的步态动力学

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Zhuoxi Bi , Wenquan Cui , Luming Feng , Yaxin Liu , Xin Ma , Shihao Li , Changle Ren , Liming Shu
{"title":"用可穿戴捕获系统评估全膝关节置换术前后的步态动力学","authors":"Zhuoxi Bi ,&nbsp;Wenquan Cui ,&nbsp;Luming Feng ,&nbsp;Yaxin Liu ,&nbsp;Xin Ma ,&nbsp;Shihao Li ,&nbsp;Changle Ren ,&nbsp;Liming Shu","doi":"10.1016/j.medengphy.2025.104309","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Walking function reconstruction is suboptimal after total knee arthroplasty. However, a comprehensive investigation of kinematic and kinetic parameters before and after total knee arthroplasty is lacking. This study aimed to quantitatively compare the differences in gait parameters before and after total knee arthroplasty with those of healthy control group.</div></div><div><h3>Methods</h3><div>This study utilized a wearable capture system to obtain gait parameters from pre- operative and one-year post- operative patients, as well as from the healthy control group. The parameters included walking speed, the stance phase percentage during the gait cycle, knee flexion angle, center of pressure trajectory, vertical ground reaction force, and its moment on the coronal plane of the knee joint.</div></div><div><h3>Results</h3><div>Post-total knee arthroplasty patients presented an averaged 12.5 % improvement in walking speed and an averaged 19.75 % increasement in the maximum knee flexion angle during the gait cycle, although both were still lower than those of the healthy control group. During the stance phase, the vertical ground reaction force exhibited a less pronounced double-hump feature, and compared to preoperative levels, the peak of the coronal plane moment of the knee was reduced by approximately half.</div></div><div><h3>Conclusion</h3><div>One-year post- total knee arthroplasty patients exhibited improved walking function compared to preoperative levels, but a gap remained compared to healthy control group. Additionally, preoperative gait abnormalities persisted postoperatively.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104309"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of pre- and post-operative gait dynamics in total knee arthroplasty by a wearable capture system\",\"authors\":\"Zhuoxi Bi ,&nbsp;Wenquan Cui ,&nbsp;Luming Feng ,&nbsp;Yaxin Liu ,&nbsp;Xin Ma ,&nbsp;Shihao Li ,&nbsp;Changle Ren ,&nbsp;Liming Shu\",\"doi\":\"10.1016/j.medengphy.2025.104309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Walking function reconstruction is suboptimal after total knee arthroplasty. However, a comprehensive investigation of kinematic and kinetic parameters before and after total knee arthroplasty is lacking. This study aimed to quantitatively compare the differences in gait parameters before and after total knee arthroplasty with those of healthy control group.</div></div><div><h3>Methods</h3><div>This study utilized a wearable capture system to obtain gait parameters from pre- operative and one-year post- operative patients, as well as from the healthy control group. The parameters included walking speed, the stance phase percentage during the gait cycle, knee flexion angle, center of pressure trajectory, vertical ground reaction force, and its moment on the coronal plane of the knee joint.</div></div><div><h3>Results</h3><div>Post-total knee arthroplasty patients presented an averaged 12.5 % improvement in walking speed and an averaged 19.75 % increasement in the maximum knee flexion angle during the gait cycle, although both were still lower than those of the healthy control group. During the stance phase, the vertical ground reaction force exhibited a less pronounced double-hump feature, and compared to preoperative levels, the peak of the coronal plane moment of the knee was reduced by approximately half.</div></div><div><h3>Conclusion</h3><div>One-year post- total knee arthroplasty patients exhibited improved walking function compared to preoperative levels, but a gap remained compared to healthy control group. Additionally, preoperative gait abnormalities persisted postoperatively.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"137 \",\"pages\":\"Article 104309\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453325000281\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000281","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:全膝关节置换术后行走功能重建不理想。然而,缺乏对全膝关节置换术前后运动学和动力学参数的全面研究。本研究旨在定量比较全膝关节置换术前后与健康对照组步态参数的差异。方法采用可穿戴式采集系统采集术前、术后1年患者及健康对照组的步态参数。参数包括行走速度、步态周期中站立相位百分比、膝关节屈伸角度、压力轨迹中心、垂直地面反作用力及其在膝关节冠状面上的力矩。结果全膝关节置换术后患者步行速度平均提高12.5%,步态周期内最大膝关节屈曲角度平均提高19.75%,但仍低于健康对照组。在站立阶段,垂直地面反作用力表现出不太明显的双驼峰特征,与术前水平相比,膝关节冠状面力矩峰值减少了约一半。结论:与术前相比,全膝关节置换术后1年患者的行走功能有所改善,但与健康对照组相比仍有差距。此外,术前步态异常在术后持续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of pre- and post-operative gait dynamics in total knee arthroplasty by a wearable capture system

Background

Walking function reconstruction is suboptimal after total knee arthroplasty. However, a comprehensive investigation of kinematic and kinetic parameters before and after total knee arthroplasty is lacking. This study aimed to quantitatively compare the differences in gait parameters before and after total knee arthroplasty with those of healthy control group.

Methods

This study utilized a wearable capture system to obtain gait parameters from pre- operative and one-year post- operative patients, as well as from the healthy control group. The parameters included walking speed, the stance phase percentage during the gait cycle, knee flexion angle, center of pressure trajectory, vertical ground reaction force, and its moment on the coronal plane of the knee joint.

Results

Post-total knee arthroplasty patients presented an averaged 12.5 % improvement in walking speed and an averaged 19.75 % increasement in the maximum knee flexion angle during the gait cycle, although both were still lower than those of the healthy control group. During the stance phase, the vertical ground reaction force exhibited a less pronounced double-hump feature, and compared to preoperative levels, the peak of the coronal plane moment of the knee was reduced by approximately half.

Conclusion

One-year post- total knee arthroplasty patients exhibited improved walking function compared to preoperative levels, but a gap remained compared to healthy control group. Additionally, preoperative gait abnormalities persisted postoperatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信