特定系统的水产养殖年增长率可以缓解中国生产、污染和二氧化碳排放的三难困境

Shuang-Lin Dong, Ling Cao, Wen-Jing Liu, Ming Huang, Yun-Xia Sun, Yu-Yang Zhang, Shuang-En Yu, Yan-Gen Zhou, Li Li, Yun-Wei Dong
{"title":"特定系统的水产养殖年增长率可以缓解中国生产、污染和二氧化碳排放的三难困境","authors":"Shuang-Lin Dong, Ling Cao, Wen-Jing Liu, Ming Huang, Yun-Xia Sun, Yu-Yang Zhang, Shuang-En Yu, Yan-Gen Zhou, Li Li, Yun-Wei Dong","doi":"10.1038/s43016-025-01122-1","DOIUrl":null,"url":null,"abstract":"<p>The aquaculture sector faces a trilemma of simultaneously boosting production, decreasing nutrient discharges and reducing CO<sub>2</sub> emissions. Here we evaluate the growth trajectories and ecological footprints of different aquaculture systems in China, considering both business as usual and ecological transformation scenarios, and anticipate the evolution of sustainable aquaculture in the post-carbon neutrality era. We explore a two-step approach involving ecological transformation and green aquaculture. By adjusting the annual growth rates of six out of nine aquaculture systems, energy use, nitrogen discharge, land use and freshwater usage per unit of mass gain could be reduced by 1.70%, 6.89%, 7.12% and 8.86%, respectively, by 2050 compared with the business as usual levels. Owing to changes in the energy supply mix in China, by 2050, the total CO<sub>2</sub> emissions from aquaculture will only increase by 5.7% compared with the level in 2021. Once carbon neutrality is attained, the focus should shift to mitigating nutrient discharges. Our findings underscore the necessity for substantial improvement in the Chinese aquaculture development plan and offer a blueprint for sustainable aquaculture advancement for guiding policy and practice.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System-specific aquaculture annual growth rates can mitigate the trilemma of production, pollution and carbon dioxide emissions in China\",\"authors\":\"Shuang-Lin Dong, Ling Cao, Wen-Jing Liu, Ming Huang, Yun-Xia Sun, Yu-Yang Zhang, Shuang-En Yu, Yan-Gen Zhou, Li Li, Yun-Wei Dong\",\"doi\":\"10.1038/s43016-025-01122-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aquaculture sector faces a trilemma of simultaneously boosting production, decreasing nutrient discharges and reducing CO<sub>2</sub> emissions. Here we evaluate the growth trajectories and ecological footprints of different aquaculture systems in China, considering both business as usual and ecological transformation scenarios, and anticipate the evolution of sustainable aquaculture in the post-carbon neutrality era. We explore a two-step approach involving ecological transformation and green aquaculture. By adjusting the annual growth rates of six out of nine aquaculture systems, energy use, nitrogen discharge, land use and freshwater usage per unit of mass gain could be reduced by 1.70%, 6.89%, 7.12% and 8.86%, respectively, by 2050 compared with the business as usual levels. Owing to changes in the energy supply mix in China, by 2050, the total CO<sub>2</sub> emissions from aquaculture will only increase by 5.7% compared with the level in 2021. Once carbon neutrality is attained, the focus should shift to mitigating nutrient discharges. Our findings underscore the necessity for substantial improvement in the Chinese aquaculture development plan and offer a blueprint for sustainable aquaculture advancement for guiding policy and practice.</p>\",\"PeriodicalId\":19090,\"journal\":{\"name\":\"Nature Food\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43016-025-01122-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-025-01122-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水产养殖部门面临着同时提高产量、减少营养物排放和减少二氧化碳排放的三难困境。在此,我们评估了中国不同水产养殖系统的增长轨迹和生态足迹,考虑了正常经营和生态转型两种情景,并预测了后碳中和时代可持续水产养殖的演变。我们探索了生态转型和绿色水产养殖两步走的方法。通过调整9个水产养殖系统中6个系统的年增长率,到2050年,单位质量增重的能源消耗、氮排放、土地利用和淡水使用量可分别比正常水平降低1.70%、6.89%、7.12%和8.86%。由于中国能源供应结构的变化,到2050年,水产养殖的二氧化碳排放总量将仅比2021年增加5.7%。一旦实现了碳中和,重点就应该转移到减少营养物排放上。我们的研究结果强调了中国水产养殖发展规划的实质性改进的必要性,并为指导政策和实践提供了可持续水产养殖发展的蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

System-specific aquaculture annual growth rates can mitigate the trilemma of production, pollution and carbon dioxide emissions in China

System-specific aquaculture annual growth rates can mitigate the trilemma of production, pollution and carbon dioxide emissions in China

The aquaculture sector faces a trilemma of simultaneously boosting production, decreasing nutrient discharges and reducing CO2 emissions. Here we evaluate the growth trajectories and ecological footprints of different aquaculture systems in China, considering both business as usual and ecological transformation scenarios, and anticipate the evolution of sustainable aquaculture in the post-carbon neutrality era. We explore a two-step approach involving ecological transformation and green aquaculture. By adjusting the annual growth rates of six out of nine aquaculture systems, energy use, nitrogen discharge, land use and freshwater usage per unit of mass gain could be reduced by 1.70%, 6.89%, 7.12% and 8.86%, respectively, by 2050 compared with the business as usual levels. Owing to changes in the energy supply mix in China, by 2050, the total CO2 emissions from aquaculture will only increase by 5.7% compared with the level in 2021. Once carbon neutrality is attained, the focus should shift to mitigating nutrient discharges. Our findings underscore the necessity for substantial improvement in the Chinese aquaculture development plan and offer a blueprint for sustainable aquaculture advancement for guiding policy and practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信