{"title":"有界团数图的谱极值问题","authors":"Tingting Wang, Lihua Feng, Lu Lu","doi":"10.1016/j.laa.2025.01.043","DOIUrl":null,"url":null,"abstract":"<div><div>For a family of graphs <span><math><mi>F</mi></math></span>, a graph is called <span><math><mi>F</mi></math></span>-free if it contains no subgraph isomorphic to any graph in <span><math><mi>F</mi></math></span>. For two integers <em>n</em> and <em>r</em>, let <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> be the set of graphs on <em>n</em> vertices with clique number at most <em>r</em>. Denote by<span><span><span><math><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>G</mi><mspace></mspace><mrow><mtext>is </mtext><mi>F</mi><mtext>-free</mtext></mrow><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the spectral radius of <em>G</em>. Furthermore, denote by <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>|</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>G</mi><mtext> is </mtext><mi>F</mi><mtext>-</mtext><mtext>free</mtext><mo>}</mo></math></span> the set of extremal graphs. In this paper, we first give a spectral Erdös-Sós theorem in <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>, that is, for fixed <span><math><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, if a graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> with <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>λ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span>, then it contains all trees on <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> vertices or <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></math></span> vertices unless <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> is the join of the Turán graph <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> and the independent set <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>. Next, for fixed <span><math><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, we completely determine <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>)</mo></math></span>, that is <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 273-295"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral extremal problems for graphs with bounded clique number\",\"authors\":\"Tingting Wang, Lihua Feng, Lu Lu\",\"doi\":\"10.1016/j.laa.2025.01.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a family of graphs <span><math><mi>F</mi></math></span>, a graph is called <span><math><mi>F</mi></math></span>-free if it contains no subgraph isomorphic to any graph in <span><math><mi>F</mi></math></span>. For two integers <em>n</em> and <em>r</em>, let <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> be the set of graphs on <em>n</em> vertices with clique number at most <em>r</em>. Denote by<span><span><span><math><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>G</mi><mspace></mspace><mrow><mtext>is </mtext><mi>F</mi><mtext>-free</mtext></mrow><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the spectral radius of <em>G</em>. Furthermore, denote by <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo><mo>|</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mtext>ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>G</mi><mtext> is </mtext><mi>F</mi><mtext>-</mtext><mtext>free</mtext><mo>}</mo></math></span> the set of extremal graphs. In this paper, we first give a spectral Erdös-Sós theorem in <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span>, that is, for fixed <span><math><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, if a graph <span><math><mi>G</mi><mo>∈</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>)</mo></math></span> with <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>λ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span>, then it contains all trees on <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> vertices or <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></math></span> vertices unless <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> is the join of the Turán graph <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> and the independent set <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span>. Next, for fixed <span><math><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, we completely determine <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>)</mo></math></span>, that is <span><math><msub><mrow><mtext>Ex</mtext></mrow><mrow><mi>s</mi><mi>p</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo><mo>∨</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span>.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"710 \",\"pages\":\"Pages 273-295\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525000497\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000497","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于图族F,如果图不包含与F中任何图同构的子图,则称为F-free图。对于两个整数n和r,设G(n,r)为n个顶点上团数最多为r的图的集合。记为Exsp(n,r,F)= max (λ(G)|G∈G(n,r)和gis F-free},其中λ(G)是G的谱半径。进一步记为Exsp(n,r,F)={G∈G(n,r)|λ(G)= Exsp(n,r,F),G是F-free}极值图集。本文首先给出了G(n,r)上的谱Erdös-Sós定理,即对于固定k≥r≥2且n足够大,如果一个图G∈G(n,r) λ(Tr−1(k)∨In−k),则它包含除G=Tr−1(k)∨In−k以外的2k+2个顶点或2k+3个顶点上的所有树,其中Tr−1(k)∨In−k是Turán图Tr−1(k)与独立集In−k的连接。其次,对于固定k≥r≥2,且n足够大,我们完全确定Exsp(n,r,C2k+2),即Exsp(n,r,C2k+2)={Tr−1(k)∨In−k}。
Spectral extremal problems for graphs with bounded clique number
For a family of graphs , a graph is called -free if it contains no subgraph isomorphic to any graph in . For two integers n and r, let be the set of graphs on n vertices with clique number at most r. Denote by where is the spectral radius of G. Furthermore, denote by the set of extremal graphs. In this paper, we first give a spectral Erdös-Sós theorem in , that is, for fixed and sufficiently large n, if a graph with , then it contains all trees on vertices or vertices unless , where is the join of the Turán graph and the independent set . Next, for fixed and sufficiently large n, we completely determine , that is .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.