Mohammed Saddek Mekahlia , Mohamed Fezari , Ahcen Aliouat
{"title":"恒q变换、伽玛图和梅尔谱图技术在人工智能辅助心脏诊断中的比较分析","authors":"Mohammed Saddek Mekahlia , Mohamed Fezari , Ahcen Aliouat","doi":"10.1016/j.medengphy.2025.104302","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases (CVDs) are the leading global cause of death, which requires the early and accurate detection of cardiac abnormalities. Abnormal heart sounds, indicative of potential cardiac problems, pose a challenge due to their low-frequency nature. Utilizing digital signal processing and Phonocardiogram (PCG) analysis, this study employs advanced deep learning techniques for automated heart sound classification. Time-frequency representations capture multiple heart sound features, including gammatonegram, Mel-spectrogram, and Constant-Q Transform (CQT). A Convolutional Neural Network with Directed Acyclic Graph (DAG-CNN) architecture is designed and rigorously evaluated, achieving high classification accuracies of 100%, 99.7%, and 99.5% for gammatonegram, Mel-spectrogram, and CQT, respectively. Comparative analysis with pre-trained CNN models demonstrates the superior performance of the proposed model. This advancement in automated heart sound classification offers a promising and cost-effective tool for early diagnosis, particularly in resource-limited settings, helping to address the diagnostic gap and enhance cardiac care accessibility.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104302"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of Constant-Q Transform, gammatonegram, and Mel-spectrogram techniques for AI-aided cardiac diagnostics\",\"authors\":\"Mohammed Saddek Mekahlia , Mohamed Fezari , Ahcen Aliouat\",\"doi\":\"10.1016/j.medengphy.2025.104302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cardiovascular diseases (CVDs) are the leading global cause of death, which requires the early and accurate detection of cardiac abnormalities. Abnormal heart sounds, indicative of potential cardiac problems, pose a challenge due to their low-frequency nature. Utilizing digital signal processing and Phonocardiogram (PCG) analysis, this study employs advanced deep learning techniques for automated heart sound classification. Time-frequency representations capture multiple heart sound features, including gammatonegram, Mel-spectrogram, and Constant-Q Transform (CQT). A Convolutional Neural Network with Directed Acyclic Graph (DAG-CNN) architecture is designed and rigorously evaluated, achieving high classification accuracies of 100%, 99.7%, and 99.5% for gammatonegram, Mel-spectrogram, and CQT, respectively. Comparative analysis with pre-trained CNN models demonstrates the superior performance of the proposed model. This advancement in automated heart sound classification offers a promising and cost-effective tool for early diagnosis, particularly in resource-limited settings, helping to address the diagnostic gap and enhance cardiac care accessibility.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"137 \",\"pages\":\"Article 104302\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453325000219\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A comparative analysis of Constant-Q Transform, gammatonegram, and Mel-spectrogram techniques for AI-aided cardiac diagnostics
Cardiovascular diseases (CVDs) are the leading global cause of death, which requires the early and accurate detection of cardiac abnormalities. Abnormal heart sounds, indicative of potential cardiac problems, pose a challenge due to their low-frequency nature. Utilizing digital signal processing and Phonocardiogram (PCG) analysis, this study employs advanced deep learning techniques for automated heart sound classification. Time-frequency representations capture multiple heart sound features, including gammatonegram, Mel-spectrogram, and Constant-Q Transform (CQT). A Convolutional Neural Network with Directed Acyclic Graph (DAG-CNN) architecture is designed and rigorously evaluated, achieving high classification accuracies of 100%, 99.7%, and 99.5% for gammatonegram, Mel-spectrogram, and CQT, respectively. Comparative analysis with pre-trained CNN models demonstrates the superior performance of the proposed model. This advancement in automated heart sound classification offers a promising and cost-effective tool for early diagnosis, particularly in resource-limited settings, helping to address the diagnostic gap and enhance cardiac care accessibility.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.