评价甘油三酯在油菜(芸苔)油质体中的氧化稳定性

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED
Lorenz Plankensteiner, Constantinos V. Nikiforidis, Jean-Paul Vincken, Marie Hennebelle
{"title":"评价甘油三酯在油菜(芸苔)油质体中的氧化稳定性","authors":"Lorenz Plankensteiner,&nbsp;Constantinos V. Nikiforidis,&nbsp;Jean-Paul Vincken,&nbsp;Marie Hennebelle","doi":"10.1002/aocs.12902","DOIUrl":null,"url":null,"abstract":"<p>Unsaturated triacylglycerols (TAGs) are stored in natural droplets called oleosomes in seeds. The storage in oleosomes was suggested to increase TAGs' oxidative stability. In this study, we tested the oxidative stability of TAGs in rapeseed oleosomes and compared it with the one of TAGs stored as bulk oils or incorporated into oil-in-water emulsions stabilized by rapeseed lecithin. Oleosome oil-in-water emulsions (Ф<sub>oil</sub> = 0.1) were created and stored along with the bulk oils and lecithin emulsions for 63 days at 40°C. The TAGs in oleosomes were more oxidatively stable than in the bulk oils and lecithin emulsions, as indicated by the 17-day longer lag phase and a 1.6–1.8 times slower maximal hydroperoxide formation compared to the bulk oils and lecithin emulsions. Moreover, we made the first steps towards understanding the high stability of TAGs in oleosomes by monitoring the consumption of oleosome-associated antioxidants (tocopherols and carotenoids). Using oleosome extracts could be a strategy to retard TAGs oxidation in oil-in-water emulsions.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 2","pages":"435-449"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12902","citationCount":"0","resultStr":"{\"title\":\"Evaluating the oxidative stability of triacylglycerols in rapeseed (Brassica napus) oleosomes\",\"authors\":\"Lorenz Plankensteiner,&nbsp;Constantinos V. Nikiforidis,&nbsp;Jean-Paul Vincken,&nbsp;Marie Hennebelle\",\"doi\":\"10.1002/aocs.12902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unsaturated triacylglycerols (TAGs) are stored in natural droplets called oleosomes in seeds. The storage in oleosomes was suggested to increase TAGs' oxidative stability. In this study, we tested the oxidative stability of TAGs in rapeseed oleosomes and compared it with the one of TAGs stored as bulk oils or incorporated into oil-in-water emulsions stabilized by rapeseed lecithin. Oleosome oil-in-water emulsions (Ф<sub>oil</sub> = 0.1) were created and stored along with the bulk oils and lecithin emulsions for 63 days at 40°C. The TAGs in oleosomes were more oxidatively stable than in the bulk oils and lecithin emulsions, as indicated by the 17-day longer lag phase and a 1.6–1.8 times slower maximal hydroperoxide formation compared to the bulk oils and lecithin emulsions. Moreover, we made the first steps towards understanding the high stability of TAGs in oleosomes by monitoring the consumption of oleosome-associated antioxidants (tocopherols and carotenoids). Using oleosome extracts could be a strategy to retard TAGs oxidation in oil-in-water emulsions.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"102 2\",\"pages\":\"435-449\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12902\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12902\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12902","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

不饱和三酰甘油(TAGs)储存在种子中称为油小体的天然液滴中。在油脂体中储存可以提高标签的氧化稳定性。在本研究中,我们测试了标签在油菜籽油小体中的氧化稳定性,并将其与作为散装油储存或加入油菜籽卵磷脂稳定的水包油乳液中的标签进行了比较。制备油包水乳液(Фoil = 0.1),并与散装油和卵磷脂乳液一起在40°C下保存63天。与散装油和卵磷脂乳液相比,油小体中的标签具有更强的氧化稳定性,滞后期延长17天,最大过氧化氢形成速度慢1.6-1.8倍。此外,我们通过监测油质体相关抗氧化剂(生育酚和类胡萝卜素)的消耗,为了解油质体中tag的高稳定性迈出了第一步。使用油体提取物可能是一种延缓水包油乳剂中标签氧化的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluating the oxidative stability of triacylglycerols in rapeseed (Brassica napus) oleosomes

Evaluating the oxidative stability of triacylglycerols in rapeseed (Brassica napus) oleosomes

Unsaturated triacylglycerols (TAGs) are stored in natural droplets called oleosomes in seeds. The storage in oleosomes was suggested to increase TAGs' oxidative stability. In this study, we tested the oxidative stability of TAGs in rapeseed oleosomes and compared it with the one of TAGs stored as bulk oils or incorporated into oil-in-water emulsions stabilized by rapeseed lecithin. Oleosome oil-in-water emulsions (Фoil = 0.1) were created and stored along with the bulk oils and lecithin emulsions for 63 days at 40°C. The TAGs in oleosomes were more oxidatively stable than in the bulk oils and lecithin emulsions, as indicated by the 17-day longer lag phase and a 1.6–1.8 times slower maximal hydroperoxide formation compared to the bulk oils and lecithin emulsions. Moreover, we made the first steps towards understanding the high stability of TAGs in oleosomes by monitoring the consumption of oleosome-associated antioxidants (tocopherols and carotenoids). Using oleosome extracts could be a strategy to retard TAGs oxidation in oil-in-water emulsions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信