非负矩阵分解问题的进一步限制版本

IF 1 3区 数学 Q1 MATHEMATICS
Yaroslav Shitov
{"title":"非负矩阵分解问题的进一步限制版本","authors":"Yaroslav Shitov","doi":"10.1016/j.laa.2025.01.040","DOIUrl":null,"url":null,"abstract":"<div><div>We discuss the functions of SNT-rank and restricted SNT-rank, introduced in a recent article of Kokol Bukovšek and Šmigoc. We answer several questions from their work and give an example of a symmetric nonnegative matrix for which the restricted SNT-rank is not defined. Moreover, we show that the restricted SNT-rank of a matrix can exceed its SNT-rank even if both of them are defined. We use earlier results to give bounds on SNT-ranks of rank-three matrices and Euclidean distance matrices, and we determine the complexity of the algorithmic computation of SNT-ranks.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 267-272"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further restricted versions of the nonnegative matrix factorization problem\",\"authors\":\"Yaroslav Shitov\",\"doi\":\"10.1016/j.laa.2025.01.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We discuss the functions of SNT-rank and restricted SNT-rank, introduced in a recent article of Kokol Bukovšek and Šmigoc. We answer several questions from their work and give an example of a symmetric nonnegative matrix for which the restricted SNT-rank is not defined. Moreover, we show that the restricted SNT-rank of a matrix can exceed its SNT-rank even if both of them are defined. We use earlier results to give bounds on SNT-ranks of rank-three matrices and Euclidean distance matrices, and we determine the complexity of the algorithmic computation of SNT-ranks.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"710 \",\"pages\":\"Pages 267-272\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525000461\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000461","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了在Kokol Bukovšek和Šmigoc最近的一篇文章中介绍的SNT-rank和受限SNT-rank的功能。我们从他们的工作中回答了几个问题,并给出了一个不定义限制snt秩的对称非负矩阵的例子。此外,我们证明了一个矩阵的限制snt -秩可以超过它的snt -秩,即使这两个矩阵都被定义。我们利用先前的结果给出了三阶矩阵和欧氏距离矩阵的snt -秩的边界,并确定了snt -秩的算法计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further restricted versions of the nonnegative matrix factorization problem
We discuss the functions of SNT-rank and restricted SNT-rank, introduced in a recent article of Kokol Bukovšek and Šmigoc. We answer several questions from their work and give an example of a symmetric nonnegative matrix for which the restricted SNT-rank is not defined. Moreover, we show that the restricted SNT-rank of a matrix can exceed its SNT-rank even if both of them are defined. We use earlier results to give bounds on SNT-ranks of rank-three matrices and Euclidean distance matrices, and we determine the complexity of the algorithmic computation of SNT-ranks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信