不相交奇轮的谱极值图

IF 1 3区 数学 Q1 MATHEMATICS
Yu Luo , Zhenyu Ni , Yanxia Dong
{"title":"不相交奇轮的谱极值图","authors":"Yu Luo ,&nbsp;Zhenyu Ni ,&nbsp;Yanxia Dong","doi":"10.1016/j.laa.2025.01.034","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <em>F</em>, let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all <em>F</em>-free graphs of order <em>n</em>, respectively. <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> consist of the extremal graphs associated with <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, respectively. The odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is constructed by joining a vertex to a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span>. Cioabă, Desai and Tait determined the spectral extremal graphs of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Xiao and Zamora determined the Turán number and all extremal graphs for <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, which is the union of <em>t</em> vertex-disjoint copies of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, we focus on the graph with maximum spectral radius among those that exclude any subgraph isomorphic to <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We present structural characteristics of these spectral extremal graphs for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Furthermore, we demonstrate that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>10</mn></math></span> and <em>n</em> large enough.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 243-266"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral extremal graphs for disjoint odd wheels\",\"authors\":\"Yu Luo ,&nbsp;Zhenyu Ni ,&nbsp;Yanxia Dong\",\"doi\":\"10.1016/j.laa.2025.01.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given graph <em>F</em>, let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all <em>F</em>-free graphs of order <em>n</em>, respectively. <span><math><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> consist of the extremal graphs associated with <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> and <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, respectively. The odd wheel <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is constructed by joining a vertex to a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span>. Cioabă, Desai and Tait determined the spectral extremal graphs of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Xiao and Zamora determined the Turán number and all extremal graphs for <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, which is the union of <em>t</em> vertex-disjoint copies of <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, we focus on the graph with maximum spectral radius among those that exclude any subgraph isomorphic to <span><math><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We present structural characteristics of these spectral extremal graphs for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>k</mi><mo>∉</mo><mrow><mo>{</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></mrow></math></span>. Furthermore, we demonstrate that <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><mrow><mi>EX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>t</mi><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>10</mn></math></span> and <em>n</em> large enough.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"710 \",\"pages\":\"Pages 243-266\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525000400\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000400","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定图F,设ex(n,F)和spex(n,F)分别为所有n阶无F图上邻接矩阵的最大边数和最大谱半径。EX(n,F)和SPEX(n,F)分别由与EX(n,F)和SPEX(n,F)相关联的极值图组成。奇轮W2k+1是通过将一个顶点连接到一个循环C2k来构造的。cioabei, Desai和Tait确定了k≥2,k∈{4,5}时W2k+1的光谱极值图。Xiao和Zamora确定了tW2k+1的Turán个数和所有极值图,这是k≥3时W2k+1的t个顶点不相交副本的并。在本文中,我们主要讨论在不包含与tW2k+1同构的任何子图的图中,谱半径最大的图。我们给出了k≥3,k∈{4,5}时这些谱极值图的结构特征。进一步证明SPEX(n,tW2k+1)∩EX(n,tW2k+1)=∅,当k≥10且n足够大时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral extremal graphs for disjoint odd wheels
For a given graph F, let ex(n,F) and spex(n,F) be the maximum number of edges and the maximum spectral radius of the adjacency matrix over all F-free graphs of order n, respectively. EX(n,F) and SPEX(n,F) consist of the extremal graphs associated with ex(n,F) and spex(n,F), respectively. The odd wheel W2k+1 is constructed by joining a vertex to a cycle C2k. Cioabă, Desai and Tait determined the spectral extremal graphs of W2k+1 for k2,k{4,5}. Xiao and Zamora determined the Turán number and all extremal graphs for tW2k+1, which is the union of t vertex-disjoint copies of W2k+1 for k3. In this paper, we focus on the graph with maximum spectral radius among those that exclude any subgraph isomorphic to tW2k+1. We present structural characteristics of these spectral extremal graphs for k3,k{4,5}. Furthermore, we demonstrate that SPEX(n,tW2k+1)EX(n,tW2k+1)= for k10 and n large enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信