Xin Kang Li, Li Jun Tang, Ze Ying Li, Dian Qiu, Zhuo Ling Yang, Xiao Yi Zhang, Xiang-Zhi Zhang, Jing Jing Guo, Bao Qiong Li
{"title":"基于机器学习和增强中级数据融合的陈皮产地识别","authors":"Xin Kang Li, Li Jun Tang, Ze Ying Li, Dian Qiu, Zhuo Ling Yang, Xiao Yi Zhang, Xiang-Zhi Zhang, Jing Jing Guo, Bao Qiong Li","doi":"10.1038/s41538-025-00376-0","DOIUrl":null,"url":null,"abstract":"<p><p>Chenpi, or dried tangerine peel, is a traditional Chinese ingredient valued in medicine and edible for its digestive and respiratory benefits. The geographical origin of Chenpi is important, as it can impact its quality, active compounds and market value. This study develops a strategy to distinguish Chenpi samples on its origin. Thirty-nine samples from eight regions in Xinhui district (Guangdong, China) are analyzed by gas chromatography (GC) and mid-infrared (MIR) technique. Four machine learning methods are employed to establish discrimination models based on GC and MIR data, with two mid-level data fusion strategies to combine the data. The results show that data fusion significantly improves Chenpi origin discrimination. The K-nearest neighbors and artificial neural network models, using modified mid-level data fusion, provide the best performance, misclassified only one sample. Machine learning in combination with modified mid-level data fusion strategy provides effective classification of Chenpi samples from different geographical origins.</p>","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":"9 1","pages":"17"},"PeriodicalIF":7.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geographical origin discrimination of Chenpi using machine learning and enhanced mid-level data fusion.\",\"authors\":\"Xin Kang Li, Li Jun Tang, Ze Ying Li, Dian Qiu, Zhuo Ling Yang, Xiao Yi Zhang, Xiang-Zhi Zhang, Jing Jing Guo, Bao Qiong Li\",\"doi\":\"10.1038/s41538-025-00376-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chenpi, or dried tangerine peel, is a traditional Chinese ingredient valued in medicine and edible for its digestive and respiratory benefits. The geographical origin of Chenpi is important, as it can impact its quality, active compounds and market value. This study develops a strategy to distinguish Chenpi samples on its origin. Thirty-nine samples from eight regions in Xinhui district (Guangdong, China) are analyzed by gas chromatography (GC) and mid-infrared (MIR) technique. Four machine learning methods are employed to establish discrimination models based on GC and MIR data, with two mid-level data fusion strategies to combine the data. The results show that data fusion significantly improves Chenpi origin discrimination. The K-nearest neighbors and artificial neural network models, using modified mid-level data fusion, provide the best performance, misclassified only one sample. Machine learning in combination with modified mid-level data fusion strategy provides effective classification of Chenpi samples from different geographical origins.</p>\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":\"9 1\",\"pages\":\"17\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1038/s41538-025-00376-0\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41538-025-00376-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Geographical origin discrimination of Chenpi using machine learning and enhanced mid-level data fusion.
Chenpi, or dried tangerine peel, is a traditional Chinese ingredient valued in medicine and edible for its digestive and respiratory benefits. The geographical origin of Chenpi is important, as it can impact its quality, active compounds and market value. This study develops a strategy to distinguish Chenpi samples on its origin. Thirty-nine samples from eight regions in Xinhui district (Guangdong, China) are analyzed by gas chromatography (GC) and mid-infrared (MIR) technique. Four machine learning methods are employed to establish discrimination models based on GC and MIR data, with two mid-level data fusion strategies to combine the data. The results show that data fusion significantly improves Chenpi origin discrimination. The K-nearest neighbors and artificial neural network models, using modified mid-level data fusion, provide the best performance, misclassified only one sample. Machine learning in combination with modified mid-level data fusion strategy provides effective classification of Chenpi samples from different geographical origins.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.