产油微生物基因组代谢模型的研究现状及应用

IF 2.3
Zijian Hu, Jinyi Qian, Yuzhou Wang, Chao Ye
{"title":"产油微生物基因组代谢模型的研究现状及应用","authors":"Zijian Hu,&nbsp;Jinyi Qian,&nbsp;Yuzhou Wang,&nbsp;Chao Ye","doi":"10.1002/fbe2.12113","DOIUrl":null,"url":null,"abstract":"<p>Oleaginous microorganisms have the unique ability to accumulate lipids that can exceed 20% of their dry cell weight under certain conditions. Despite their potential for efficient lipid production, the metabolic pathways involved are not yet fully understood, largely due to the complexity of intracellular processes and the challenges in phenotypic prediction. This review synthesizes the latest research on the application of Genome-scale Metabolic Network Models (GSMMs) to study oleaginous microorganisms, including bacteria, cyanobacteria, yeast, microalgae, and fungi, and provides a comprehensive analysis of how GSMMs have been utilized to decipher the metabolic mechanisms behind lipid accumulation and to identify key genes involved in lipid synthesis. The review highlights the role of GSMMs in predicting cellular behavior, optimizing metabolic engineering strategies, and discusses the future directions and potential of GSMMs in enhancing lipid production in microorganisms. This comprehensive overview not only summarizes the current state of research but also identifies gaps and opportunities for further investigation in the field.</p>","PeriodicalId":100544,"journal":{"name":"Food Bioengineering","volume":"3 4","pages":"492-511"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.12113","citationCount":"0","resultStr":"{\"title\":\"Current Status and Applications of Genome-Scale Metabolic Models of Oleaginous Microorganisms\",\"authors\":\"Zijian Hu,&nbsp;Jinyi Qian,&nbsp;Yuzhou Wang,&nbsp;Chao Ye\",\"doi\":\"10.1002/fbe2.12113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oleaginous microorganisms have the unique ability to accumulate lipids that can exceed 20% of their dry cell weight under certain conditions. Despite their potential for efficient lipid production, the metabolic pathways involved are not yet fully understood, largely due to the complexity of intracellular processes and the challenges in phenotypic prediction. This review synthesizes the latest research on the application of Genome-scale Metabolic Network Models (GSMMs) to study oleaginous microorganisms, including bacteria, cyanobacteria, yeast, microalgae, and fungi, and provides a comprehensive analysis of how GSMMs have been utilized to decipher the metabolic mechanisms behind lipid accumulation and to identify key genes involved in lipid synthesis. The review highlights the role of GSMMs in predicting cellular behavior, optimizing metabolic engineering strategies, and discusses the future directions and potential of GSMMs in enhancing lipid production in microorganisms. This comprehensive overview not only summarizes the current state of research but also identifies gaps and opportunities for further investigation in the field.</p>\",\"PeriodicalId\":100544,\"journal\":{\"name\":\"Food Bioengineering\",\"volume\":\"3 4\",\"pages\":\"492-511\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.12113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.12113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.12113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

产油微生物具有独特的积累脂质的能力,在某些条件下可以超过其干细胞重量的20%。尽管它们具有高效脂质生产的潜力,但所涉及的代谢途径尚未完全了解,这主要是由于细胞内过程的复杂性和表型预测的挑战。本文综述了基因组尺度代谢网络模型(GSMMs)在产油微生物(包括细菌、蓝藻、酵母、微藻和真菌)研究中的最新研究进展,并全面分析了如何利用GSMMs来解读脂质积累背后的代谢机制和识别参与脂质合成的关键基因。本文重点介绍了GSMMs在预测细胞行为、优化代谢工程策略方面的作用,并讨论了GSMMs在促进微生物脂质产生方面的未来方向和潜力。这一全面的概述不仅总结了目前的研究状况,而且还确定了在该领域进一步调查的差距和机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Current Status and Applications of Genome-Scale Metabolic Models of Oleaginous Microorganisms

Current Status and Applications of Genome-Scale Metabolic Models of Oleaginous Microorganisms

Oleaginous microorganisms have the unique ability to accumulate lipids that can exceed 20% of their dry cell weight under certain conditions. Despite their potential for efficient lipid production, the metabolic pathways involved are not yet fully understood, largely due to the complexity of intracellular processes and the challenges in phenotypic prediction. This review synthesizes the latest research on the application of Genome-scale Metabolic Network Models (GSMMs) to study oleaginous microorganisms, including bacteria, cyanobacteria, yeast, microalgae, and fungi, and provides a comprehensive analysis of how GSMMs have been utilized to decipher the metabolic mechanisms behind lipid accumulation and to identify key genes involved in lipid synthesis. The review highlights the role of GSMMs in predicting cellular behavior, optimizing metabolic engineering strategies, and discusses the future directions and potential of GSMMs in enhancing lipid production in microorganisms. This comprehensive overview not only summarizes the current state of research but also identifies gaps and opportunities for further investigation in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信