等离子准晶体中的四维守恒拓扑电荷矢量

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-02-06 DOI:10.1126/science.adt2495
Shai Tsesses, Pascal Dreher, David Janoschka, Alexander Neuhaus, Kobi Cohen, Tim C. Meiler, Tomer Bucher, Shay Sapir, Bettina Frank, Timothy J. Davis, Frank Meyer zu Heringdorf, Harald Giessen, Guy Bartal
{"title":"等离子准晶体中的四维守恒拓扑电荷矢量","authors":"Shai Tsesses, Pascal Dreher, David Janoschka, Alexander Neuhaus, Kobi Cohen, Tim C. Meiler, Tomer Bucher, Shay Sapir, Bettina Frank, Timothy J. Davis, Frank Meyer zu Heringdorf, Harald Giessen, Guy Bartal","doi":"10.1126/science.adt2495","DOIUrl":null,"url":null,"abstract":"According to Noether’s theorem, symmetries in a physical system are intertwined with conserved quantities. These symmetries often determine the system topology, which is made ever more complex with increased dimensionality. Quasicrystals have neither translational nor global rotational symmetry, yet they intrinsically inhabit a higher-dimensional space in which symmetry resurfaces. Here, we discovered topological charge vectors in four dimensions (4D) that govern the real-space topology of 2D quasicrystals and reveal their inherent conservation laws. We demonstrate control over the topology in pentagonal plasmonic quasilattices, mapped by both phase-resolved and time-domain near-field microscopy, showing that their temporal evolution continuously tunes the 2D projections of their distinct 4D topologies. Our work provides a route to experimentally probe the thermodynamic properties of quasicrystals and topological physics in 4D and above.","PeriodicalId":21678,"journal":{"name":"Science","volume":"38 1","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-dimensional conserved topological charge vectors in plasmonic quasicrystals\",\"authors\":\"Shai Tsesses, Pascal Dreher, David Janoschka, Alexander Neuhaus, Kobi Cohen, Tim C. Meiler, Tomer Bucher, Shay Sapir, Bettina Frank, Timothy J. Davis, Frank Meyer zu Heringdorf, Harald Giessen, Guy Bartal\",\"doi\":\"10.1126/science.adt2495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to Noether’s theorem, symmetries in a physical system are intertwined with conserved quantities. These symmetries often determine the system topology, which is made ever more complex with increased dimensionality. Quasicrystals have neither translational nor global rotational symmetry, yet they intrinsically inhabit a higher-dimensional space in which symmetry resurfaces. Here, we discovered topological charge vectors in four dimensions (4D) that govern the real-space topology of 2D quasicrystals and reveal their inherent conservation laws. We demonstrate control over the topology in pentagonal plasmonic quasilattices, mapped by both phase-resolved and time-domain near-field microscopy, showing that their temporal evolution continuously tunes the 2D projections of their distinct 4D topologies. Our work provides a route to experimentally probe the thermodynamic properties of quasicrystals and topological physics in 4D and above.\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/science.adt2495\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adt2495","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

根据诺特定理,物理系统中的对称性与守恒量交织在一起。这些对称性通常决定了系统拓扑结构,随着维数的增加,系统拓扑结构变得越来越复杂。准晶体既没有平移对称,也没有全局旋转对称,但它们本质上居住在一个更高维度的空间中,在这个空间中对称重新出现。在这里,我们发现了四维(4D)的拓扑电荷向量,它们控制着二维准晶体的实空间拓扑,并揭示了它们固有的守恒定律。我们展示了对五边形等离子体准晶格拓扑的控制,通过相位分辨和时域近场显微镜绘制,表明它们的时间演变不断地调整其独特的四维拓扑的二维投影。我们的工作为实验探索准晶体的热力学性质和四维及以上的拓扑物理提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-dimensional conserved topological charge vectors in plasmonic quasicrystals
According to Noether’s theorem, symmetries in a physical system are intertwined with conserved quantities. These symmetries often determine the system topology, which is made ever more complex with increased dimensionality. Quasicrystals have neither translational nor global rotational symmetry, yet they intrinsically inhabit a higher-dimensional space in which symmetry resurfaces. Here, we discovered topological charge vectors in four dimensions (4D) that govern the real-space topology of 2D quasicrystals and reveal their inherent conservation laws. We demonstrate control over the topology in pentagonal plasmonic quasilattices, mapped by both phase-resolved and time-domain near-field microscopy, showing that their temporal evolution continuously tunes the 2D projections of their distinct 4D topologies. Our work provides a route to experimentally probe the thermodynamic properties of quasicrystals and topological physics in 4D and above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信