Yang Gao, Jing Yang, Chunping Yu, He Bao, Qingzhi Long, Hailong Zhang
{"title":"掌叶莲子的化学成分及抗溃疡作用。","authors":"Yang Gao, Jing Yang, Chunping Yu, He Bao, Qingzhi Long, Hailong Zhang","doi":"10.1007/s11130-024-01286-4","DOIUrl":null,"url":null,"abstract":"<p><p>Filipendula palmata (Pall) Maxim, is a wild edible herb in Northeast China. However, little is known about its constituents and bioactivities. In this study, the gastroprotective effect of the n-butanol fraction of F. palmata in mice induced by ethanol was investigated. The chemical research was performed using multiple chromatographic approaches. In addition, the active component and mechanism of action were researched. The results showed that F. palmata significantly alleviated ulcer damage in mice, prevented gastric mucosa from the lesion induced by absolute ethanol, increased superoxide dismutase and catalase levels, and decreased malondialdehyde content. Further study revealed that F. palmata downregulated the production of TNF-α and IL-6 in serum and the expression in LPS-induced RAW 264.7 cells. The chemical study led to the isolation of thirteen compounds, one of which exhibited significant anti-inflammatory activities by facilitating the polarization of macrophages. Our work revealed that F. palmata possessed gastroprotective efficacy, and anti-inflammation and antioxidation were involved in the mechanisms. The main components in the n-butanol fraction of F. palmata, flavonoids, having an anti-inflammatory effect in RAW 264.7 cells, might be related to the antiulcer activity.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":"80 1","pages":"56"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Composition and Antiulcer Effects of Filipendula palmata in Mice.\",\"authors\":\"Yang Gao, Jing Yang, Chunping Yu, He Bao, Qingzhi Long, Hailong Zhang\",\"doi\":\"10.1007/s11130-024-01286-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Filipendula palmata (Pall) Maxim, is a wild edible herb in Northeast China. However, little is known about its constituents and bioactivities. In this study, the gastroprotective effect of the n-butanol fraction of F. palmata in mice induced by ethanol was investigated. The chemical research was performed using multiple chromatographic approaches. In addition, the active component and mechanism of action were researched. The results showed that F. palmata significantly alleviated ulcer damage in mice, prevented gastric mucosa from the lesion induced by absolute ethanol, increased superoxide dismutase and catalase levels, and decreased malondialdehyde content. Further study revealed that F. palmata downregulated the production of TNF-α and IL-6 in serum and the expression in LPS-induced RAW 264.7 cells. The chemical study led to the isolation of thirteen compounds, one of which exhibited significant anti-inflammatory activities by facilitating the polarization of macrophages. Our work revealed that F. palmata possessed gastroprotective efficacy, and anti-inflammation and antioxidation were involved in the mechanisms. The main components in the n-butanol fraction of F. palmata, flavonoids, having an anti-inflammatory effect in RAW 264.7 cells, might be related to the antiulcer activity.</p>\",\"PeriodicalId\":20092,\"journal\":{\"name\":\"Plant Foods for Human Nutrition\",\"volume\":\"80 1\",\"pages\":\"56\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Foods for Human Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11130-024-01286-4\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-024-01286-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Chemical Composition and Antiulcer Effects of Filipendula palmata in Mice.
Filipendula palmata (Pall) Maxim, is a wild edible herb in Northeast China. However, little is known about its constituents and bioactivities. In this study, the gastroprotective effect of the n-butanol fraction of F. palmata in mice induced by ethanol was investigated. The chemical research was performed using multiple chromatographic approaches. In addition, the active component and mechanism of action were researched. The results showed that F. palmata significantly alleviated ulcer damage in mice, prevented gastric mucosa from the lesion induced by absolute ethanol, increased superoxide dismutase and catalase levels, and decreased malondialdehyde content. Further study revealed that F. palmata downregulated the production of TNF-α and IL-6 in serum and the expression in LPS-induced RAW 264.7 cells. The chemical study led to the isolation of thirteen compounds, one of which exhibited significant anti-inflammatory activities by facilitating the polarization of macrophages. Our work revealed that F. palmata possessed gastroprotective efficacy, and anti-inflammation and antioxidation were involved in the mechanisms. The main components in the n-butanol fraction of F. palmata, flavonoids, having an anti-inflammatory effect in RAW 264.7 cells, might be related to the antiulcer activity.
期刊介绍:
Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by:
- Biotechnology (all fields, including molecular biology and genetic engineering)
- Food science and technology
- Functional, nutraceutical or pharma foods
- Other nutrients and non-nutrients inherent in plant foods