用非对称约束球面反褶积方法估计浅层白质中纤维取向分布

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Jingxin Meng, Jianglin He, Yuanjun Wang
{"title":"用非对称约束球面反褶积方法估计浅层白质中纤维取向分布","authors":"Jingxin Meng,&nbsp;Jianglin He,&nbsp;Yuanjun Wang","doi":"10.1016/j.jneumeth.2024.110353","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Superficial white matter is an important component of white matter. Estimation of fiber orientation distributions based on diffusion magnetic resonance imaging is a critical step in white matter tractography imaging. However, due to the complex structure of superficial white matter, existing models for estimating fiber orientation distributions are ineffective in reconstructing superficial white matter and even reconstruct incorrect orientation distributions.</div></div><div><h3>New method</h3><div>In this paper, we improve the traditional constrained spherical deconvolution method and propose a novel asymmetric constrained spherical deconvolution method. The method takes into account that the displacement profile of the water molecules in brain tissue are non-Gaussian diffusion and the core parameter kurtosis might characterize tissue structure better than diffusivity coefficients. So diffusion kurtosis imaging model is used to estimate the white matter response function. The proposed method applies the diffusion kurtosis imaging model response function to the asymmetric fiber orientation distributions, and this is the first attempt to obtain more accurate fiber orientation distributions. Furthermore, the Gaussian-Distribution distance weight and Watson-Distribution angle weight are used for asymmetric regularization.</div></div><div><h3>Results</h3><div>We evaluate the method using FiberCup phantom, ISMRM 2015 data and in vivo data provided CHCP dataset. The results show that our proposed method can more accurately reconstruct the complex fiber structure of superficial white matter with more accurate fiber orientation, fewer pseudo-peaks, and mitigate gyral bias.</div></div><div><h3>Comparison with existing methods</h3><div>Our proposed method has higher accuracy in estimating the fiber orientation distributions and can reconstruct highly curved fiber voxels.</div></div><div><h3>Conclusion</h3><div>This proposed method provides new insights into the estimation of the orientation distribution of superficial white matter fibers.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"415 ","pages":"Article 110353"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of fiber orientation distributions in superficial white matter using an asymmetric constrained spherical deconvolution method\",\"authors\":\"Jingxin Meng,&nbsp;Jianglin He,&nbsp;Yuanjun Wang\",\"doi\":\"10.1016/j.jneumeth.2024.110353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Superficial white matter is an important component of white matter. Estimation of fiber orientation distributions based on diffusion magnetic resonance imaging is a critical step in white matter tractography imaging. However, due to the complex structure of superficial white matter, existing models for estimating fiber orientation distributions are ineffective in reconstructing superficial white matter and even reconstruct incorrect orientation distributions.</div></div><div><h3>New method</h3><div>In this paper, we improve the traditional constrained spherical deconvolution method and propose a novel asymmetric constrained spherical deconvolution method. The method takes into account that the displacement profile of the water molecules in brain tissue are non-Gaussian diffusion and the core parameter kurtosis might characterize tissue structure better than diffusivity coefficients. So diffusion kurtosis imaging model is used to estimate the white matter response function. The proposed method applies the diffusion kurtosis imaging model response function to the asymmetric fiber orientation distributions, and this is the first attempt to obtain more accurate fiber orientation distributions. Furthermore, the Gaussian-Distribution distance weight and Watson-Distribution angle weight are used for asymmetric regularization.</div></div><div><h3>Results</h3><div>We evaluate the method using FiberCup phantom, ISMRM 2015 data and in vivo data provided CHCP dataset. The results show that our proposed method can more accurately reconstruct the complex fiber structure of superficial white matter with more accurate fiber orientation, fewer pseudo-peaks, and mitigate gyral bias.</div></div><div><h3>Comparison with existing methods</h3><div>Our proposed method has higher accuracy in estimating the fiber orientation distributions and can reconstruct highly curved fiber voxels.</div></div><div><h3>Conclusion</h3><div>This proposed method provides new insights into the estimation of the orientation distribution of superficial white matter fibers.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"415 \",\"pages\":\"Article 110353\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016502702400298X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016502702400298X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景浅表白质是白质的重要组成部分。基于扩散磁共振成像的纤维取向分布估计是白质束状图成像的关键步骤。然而,由于表面白质结构复杂,现有的纤维取向分布估计模型在重建表面白质时效果不佳,甚至重建错误的取向分布。本文改进了传统的约束球面反褶积方法,提出了一种新的非对称约束球面反褶积方法。该方法考虑到脑组织中水分子的位移分布是非高斯扩散,核心参数峰度比扩散系数更能表征组织结构。因此,采用扩散峰度成像模型估计脑白质响应函数。该方法将扩散峰度成像模型响应函数应用于非对称纤维取向分布,首次尝试获得更精确的纤维取向分布。此外,采用高斯分布距离权值和沃森分布角权值进行非对称正则化。结果采用FiberCup模型、ISMRM 2015数据和体内数据提供的CHCP数据集对方法进行评估。结果表明,该方法可以更准确地重建表面白质的复杂纤维结构,纤维取向更准确,伪峰更少,并减轻了旋转偏置。与现有方法相比,本文方法在估计纤维取向分布方面具有更高的精度,并且可以重建高度弯曲的纤维体素。结论该方法为研究脑浅白质纤维取向分布提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of fiber orientation distributions in superficial white matter using an asymmetric constrained spherical deconvolution method

Background

Superficial white matter is an important component of white matter. Estimation of fiber orientation distributions based on diffusion magnetic resonance imaging is a critical step in white matter tractography imaging. However, due to the complex structure of superficial white matter, existing models for estimating fiber orientation distributions are ineffective in reconstructing superficial white matter and even reconstruct incorrect orientation distributions.

New method

In this paper, we improve the traditional constrained spherical deconvolution method and propose a novel asymmetric constrained spherical deconvolution method. The method takes into account that the displacement profile of the water molecules in brain tissue are non-Gaussian diffusion and the core parameter kurtosis might characterize tissue structure better than diffusivity coefficients. So diffusion kurtosis imaging model is used to estimate the white matter response function. The proposed method applies the diffusion kurtosis imaging model response function to the asymmetric fiber orientation distributions, and this is the first attempt to obtain more accurate fiber orientation distributions. Furthermore, the Gaussian-Distribution distance weight and Watson-Distribution angle weight are used for asymmetric regularization.

Results

We evaluate the method using FiberCup phantom, ISMRM 2015 data and in vivo data provided CHCP dataset. The results show that our proposed method can more accurately reconstruct the complex fiber structure of superficial white matter with more accurate fiber orientation, fewer pseudo-peaks, and mitigate gyral bias.

Comparison with existing methods

Our proposed method has higher accuracy in estimating the fiber orientation distributions and can reconstruct highly curved fiber voxels.

Conclusion

This proposed method provides new insights into the estimation of the orientation distribution of superficial white matter fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信