有界匹配数图的谱极值问题的一些稳定性结果

IF 1 3区 数学 Q1 MATHEMATICS
Shixia Jiang , Xiying Yuan , Yanni Zhai
{"title":"有界匹配数图的谱极值问题的一些稳定性结果","authors":"Shixia Jiang ,&nbsp;Xiying Yuan ,&nbsp;Yanni Zhai","doi":"10.1016/j.laa.2024.12.018","DOIUrl":null,"url":null,"abstract":"<div><div>For a set of graphs <span><math><mi>H</mi></math></span>, a graph is called <span><math><mi>H</mi></math></span>-free if it does not contain any member of <span><math><mi>H</mi></math></span> as a subgraph. The maximum value of spectral radius among all <span><math><mi>H</mi></math></span>-free graphs of order <em>n</em> is denoted by <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, and the set of corresponding extremal graphs is denoted by <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>. In this paper, we give a stability result for graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> when <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mi>s</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>s</mi><mo>)</mo></mrow></msqrt></math></span> and <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>s</mi><mi>n</mi></math></span>. As an application, we may give some characterizations for the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>H</mi><mo>}</mo><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is a matching with <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span> edges and <em>H</em> is any non-bipartite graph.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 513-524"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some stability results for spectral extremal problems of graphs with bounded matching number\",\"authors\":\"Shixia Jiang ,&nbsp;Xiying Yuan ,&nbsp;Yanni Zhai\",\"doi\":\"10.1016/j.laa.2024.12.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a set of graphs <span><math><mi>H</mi></math></span>, a graph is called <span><math><mi>H</mi></math></span>-free if it does not contain any member of <span><math><mi>H</mi></math></span> as a subgraph. The maximum value of spectral radius among all <span><math><mi>H</mi></math></span>-free graphs of order <em>n</em> is denoted by <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>, and the set of corresponding extremal graphs is denoted by <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>. In this paper, we give a stability result for graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> when <span><math><mrow><mi>spex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≥</mo><msqrt><mrow><mi>s</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>s</mi><mo>)</mo></mrow></msqrt></math></span> and <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>s</mi><mi>n</mi></math></span>. As an application, we may give some characterizations for the graphs in <span><math><mrow><mi>SPEX</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mo>{</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>,</mo><mi>H</mi><mo>}</mo><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is a matching with <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span> edges and <em>H</em> is any non-bipartite graph.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"708 \",\"pages\":\"Pages 513-524\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004907\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004907","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图集H,如果图不包含H中的任何成员作为子图,则称为H-free图。所有n阶无H图的谱半径最大值用spex(n,H)表示,对应的极值图集用spex(n,H)表示。本文给出了当SPEX(n,H)≥s(n−s)和ex(n,H)≤sn时SPEX(n,H)图的稳定性结果。作为应用,我们可以给出SPEX(n,{Ms+1,H})中图的一些刻画,其中Ms+1是s+1条边的匹配,H是任意非二部图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some stability results for spectral extremal problems of graphs with bounded matching number
For a set of graphs H, a graph is called H-free if it does not contain any member of H as a subgraph. The maximum value of spectral radius among all H-free graphs of order n is denoted by spex(n,H), and the set of corresponding extremal graphs is denoted by SPEX(n,H). In this paper, we give a stability result for graphs in SPEX(n,H) when spex(n,H)s(ns) and ex(n,H)sn. As an application, we may give some characterizations for the graphs in SPEX(n,{Ms+1,H}), where Ms+1 is a matching with s+1 edges and H is any non-bipartite graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信