{"title":"奇尺寸对称双随机特征值反问题","authors":"Mohadese Raeisi Sarkhoni , Hossein Momenaee Kermani , Azim Rivaz","doi":"10.1016/j.laa.2024.12.020","DOIUrl":null,"url":null,"abstract":"<div><div>The symmetric doubly stochastic inverse eigenvalue problem seeks to determine the necessary and sufficient conditions for a real list of eigenvalues to be realized by a symmetric doubly stochastic matrix. Nader et al. (2019) <span><span>[15]</span></span>, established that for odd integers <em>n</em> a list of the form <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo><</mo><mn>1</mn></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> cannot be the spectrum of any <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> doubly stochastic matrix. This implies that the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> is also unrealizable.</div><div>This paper extends these findings by proving that for odd <em>n</em> and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, the list <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> cannot be the spectrum of a symmetric doubly stochastic matrix. We demonstrate that for odd <em>n</em> the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, is indeed realizable as the spectrum of a symmetric doubly stochastic matrix.</div><div>Furthermore, we utilize our methodology to derive new sufficient conditions for the existence of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric doubly stochastic matrices with a prescribed list of eigenvalues. This leads to a condition for the existence of symmetric doubly stochastic matrices with a normalized Suleimanova spectrum. The paper concludes with additional partial results and illustrative examples.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 594-607"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric doubly stochastic inverse eigenvalue problem for odd sizes\",\"authors\":\"Mohadese Raeisi Sarkhoni , Hossein Momenaee Kermani , Azim Rivaz\",\"doi\":\"10.1016/j.laa.2024.12.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The symmetric doubly stochastic inverse eigenvalue problem seeks to determine the necessary and sufficient conditions for a real list of eigenvalues to be realized by a symmetric doubly stochastic matrix. Nader et al. (2019) <span><span>[15]</span></span>, established that for odd integers <em>n</em> a list of the form <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo><</mo><mn>1</mn></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> cannot be the spectrum of any <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> doubly stochastic matrix. This implies that the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> is also unrealizable.</div><div>This paper extends these findings by proving that for odd <em>n</em> and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, the list <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> cannot be the spectrum of a symmetric doubly stochastic matrix. We demonstrate that for odd <em>n</em> the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, is indeed realizable as the spectrum of a symmetric doubly stochastic matrix.</div><div>Furthermore, we utilize our methodology to derive new sufficient conditions for the existence of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric doubly stochastic matrices with a prescribed list of eigenvalues. This leads to a condition for the existence of symmetric doubly stochastic matrices with a normalized Suleimanova spectrum. The paper concludes with additional partial results and illustrative examples.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"708 \",\"pages\":\"Pages 594-607\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004920\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004920","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对称双随机反特征值问题旨在确定对称双随机矩阵实现实特征值列表的充分必要条件。Nader et al.(2019)[15]建立了对于一个形式为σ=(1,λ2,λ3,…,λn−1,−1)的列表中的奇数,其中|λi|<;1对于i=2,…,n−1不能是任意n×n双随机矩阵的谱。这意味着列表σ=(1,0,…,0,−1)也是不可实现的。本文推广了这些发现,证明了对于奇数n和λn∈[- 1,- n - 1n],表(1,0,…,0,λn)不可能是对称双随机矩阵的谱。证明了对于奇数n,列表σ=(1,0,…,0,- n - 1n)确实可以作为对称双随机矩阵的谱来实现。此外,我们利用我们的方法推导了具有规定特征值列表的n×n对称双随机矩阵存在的新的充分条件。给出了具有归一化Suleimanova谱的对称双随机矩阵存在的一个条件。最后给出了部分结果和举例说明。
Symmetric doubly stochastic inverse eigenvalue problem for odd sizes
The symmetric doubly stochastic inverse eigenvalue problem seeks to determine the necessary and sufficient conditions for a real list of eigenvalues to be realized by a symmetric doubly stochastic matrix. Nader et al. (2019) [15], established that for odd integers n a list of the form with for cannot be the spectrum of any doubly stochastic matrix. This implies that the list is also unrealizable.
This paper extends these findings by proving that for odd n and , the list cannot be the spectrum of a symmetric doubly stochastic matrix. We demonstrate that for odd n the list , is indeed realizable as the spectrum of a symmetric doubly stochastic matrix.
Furthermore, we utilize our methodology to derive new sufficient conditions for the existence of symmetric doubly stochastic matrices with a prescribed list of eigenvalues. This leads to a condition for the existence of symmetric doubly stochastic matrices with a normalized Suleimanova spectrum. The paper concludes with additional partial results and illustrative examples.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.