一种逆行漂移LDMOS的仿真与实验论证

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shaoxin Yu , Rongsheng Chen , Weiheng Shao , Xiaoyan Zhao , Zheng Chen , Weizhong Shan , Jenhao Cheng
{"title":"一种逆行漂移LDMOS的仿真与实验论证","authors":"Shaoxin Yu ,&nbsp;Rongsheng Chen ,&nbsp;Weiheng Shao ,&nbsp;Xiaoyan Zhao ,&nbsp;Zheng Chen ,&nbsp;Weizhong Shan ,&nbsp;Jenhao Cheng","doi":"10.1016/j.sse.2024.109050","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, an RD (Retrograde drift) LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. The drift region in this proposed device is trapezoidal in shape and gradually decreases from top to bottom in doping concentration, called “retrograde drift.” Simulations indicate that this RD device has an 11.7% lower electric field peak value, 6.2% lower potential under the poly gate, 32.1% higher current width in the drift region, and 10.5% lower impact gen rate at the corner of FP (Field plate) as well. A series of devices have been fabricated using a photoresist treatment process. Compared with the conventional BD (box-shape drift) device, the RD device’s <span><math><mrow><mi>BV</mi></mrow></math></span>(Breakdown voltage)-<span><math><msub><mi>R</mi><mrow><mi>on</mi><mo>,</mo><mi>s</mi><mi>p</mi></mrow></msub></math></span> (on-resistance) FOM (Figure of merit) performance is improved by 30.9%, and the <span><math><msub><mi>Q</mi><mrow><mi>gd</mi></mrow></msub></math></span>(Gate-drain charge)-<span><math><msub><mi>R</mi><mrow><mi>on</mi><mo>,</mo><mi>s</mi><mi>p</mi></mrow></msub></math></span> FOM character is improved by 42.1%. Moreover, the RD device owns better HCI (Hot carrier injection) performance on both <span><math><msub><mi>R</mi><mrow><mi>on</mi><mo>,</mo><mi>s</mi><mi>p</mi></mrow></msub></math></span> degradation and <span><math><msub><mi>V</mi><mi>T</mi></msub></math></span> (Threshold voltage) degradation.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"224 ","pages":"Article 109050"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and experimental Demonstration on A retrograde drift LDMOS\",\"authors\":\"Shaoxin Yu ,&nbsp;Rongsheng Chen ,&nbsp;Weiheng Shao ,&nbsp;Xiaoyan Zhao ,&nbsp;Zheng Chen ,&nbsp;Weizhong Shan ,&nbsp;Jenhao Cheng\",\"doi\":\"10.1016/j.sse.2024.109050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, an RD (Retrograde drift) LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. The drift region in this proposed device is trapezoidal in shape and gradually decreases from top to bottom in doping concentration, called “retrograde drift.” Simulations indicate that this RD device has an 11.7% lower electric field peak value, 6.2% lower potential under the poly gate, 32.1% higher current width in the drift region, and 10.5% lower impact gen rate at the corner of FP (Field plate) as well. A series of devices have been fabricated using a photoresist treatment process. Compared with the conventional BD (box-shape drift) device, the RD device’s <span><math><mrow><mi>BV</mi></mrow></math></span>(Breakdown voltage)-<span><math><msub><mi>R</mi><mrow><mi>on</mi><mo>,</mo><mi>s</mi><mi>p</mi></mrow></msub></math></span> (on-resistance) FOM (Figure of merit) performance is improved by 30.9%, and the <span><math><msub><mi>Q</mi><mrow><mi>gd</mi></mrow></msub></math></span>(Gate-drain charge)-<span><math><msub><mi>R</mi><mrow><mi>on</mi><mo>,</mo><mi>s</mi><mi>p</mi></mrow></msub></math></span> FOM character is improved by 42.1%. Moreover, the RD device owns better HCI (Hot carrier injection) performance on both <span><math><msub><mi>R</mi><mrow><mi>on</mi><mo>,</mo><mi>s</mi><mi>p</mi></mrow></msub></math></span> degradation and <span><math><msub><mi>V</mi><mi>T</mi></msub></math></span> (Threshold voltage) degradation.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"224 \",\"pages\":\"Article 109050\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110124001990\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001990","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种逆行漂移(RD)双扩散金属氧化物半导体(LDMOS)器件。该装置的漂移区域呈梯形,随着掺杂浓度的增加,从上到下逐渐减小,称为“逆行漂移”。仿真结果表明,该器件的电场峰值降低了11.7%,多栅极下电位降低了6.2%,漂移区电流宽度提高了32.1%,FP(场板)角处的冲击产生率降低了10.5%。利用光刻胶处理工艺制备了一系列器件。与传统的BD(箱形漂移)器件相比,RD器件的BV(击穿电压)-Ron,sp(导通电阻)FOM性能提高了30.9%,Qgd(栅漏电荷)-Ron,sp FOM性能提高了42.1%。此外,该RD器件在Ron、sp降解和VT降解上都具有更好的HCI(热载流子注入)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and experimental Demonstration on A retrograde drift LDMOS
In this article, an RD (Retrograde drift) LDMOS (Lateral double diffused metal oxide semiconductor) device is introduced. The drift region in this proposed device is trapezoidal in shape and gradually decreases from top to bottom in doping concentration, called “retrograde drift.” Simulations indicate that this RD device has an 11.7% lower electric field peak value, 6.2% lower potential under the poly gate, 32.1% higher current width in the drift region, and 10.5% lower impact gen rate at the corner of FP (Field plate) as well. A series of devices have been fabricated using a photoresist treatment process. Compared with the conventional BD (box-shape drift) device, the RD device’s BV(Breakdown voltage)-Ron,sp (on-resistance) FOM (Figure of merit) performance is improved by 30.9%, and the Qgd(Gate-drain charge)-Ron,sp FOM character is improved by 42.1%. Moreover, the RD device owns better HCI (Hot carrier injection) performance on both Ron,sp degradation and VT (Threshold voltage) degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信