霍夫曼图着色

IF 1 3区 数学 Q1 MATHEMATICS
Aida Abiad , Wieb Bosma , Thijs van Veluw
{"title":"霍夫曼图着色","authors":"Aida Abiad ,&nbsp;Wieb Bosma ,&nbsp;Thijs van Veluw","doi":"10.1016/j.laa.2025.01.036","DOIUrl":null,"url":null,"abstract":"<div><div>Hoffman's bound is a well-known spectral bound on the chromatic number of a graph, known to be tight for instance for bipartite graphs. While Hoffman colorings (colorings attaining the bound) were studied before for regular graphs, for general graphs not much is known. We investigate tightness of the Hoffman bound, with a particular focus on irregular graphs, obtaining several results on the graph structure of Hoffman colorings. In particular, we prove a Decomposition Theorem, which characterizes the structure of Hoffman colorings, and we use it to completely classify Hoffman colorability of cone graphs and line graphs. We also prove a partial converse, the Composition Theorem, leading to an algorithm for computing all connected Hoffman colorable graphs for some given number of vertices and colors. Since several graph coloring parameters are known to be sandwiched between the Hoffman bound and the chromatic number, as a byproduct of our results, we obtain the values of these chromatic parameters.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 129-150"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hoffman colorings of graphs\",\"authors\":\"Aida Abiad ,&nbsp;Wieb Bosma ,&nbsp;Thijs van Veluw\",\"doi\":\"10.1016/j.laa.2025.01.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hoffman's bound is a well-known spectral bound on the chromatic number of a graph, known to be tight for instance for bipartite graphs. While Hoffman colorings (colorings attaining the bound) were studied before for regular graphs, for general graphs not much is known. We investigate tightness of the Hoffman bound, with a particular focus on irregular graphs, obtaining several results on the graph structure of Hoffman colorings. In particular, we prove a Decomposition Theorem, which characterizes the structure of Hoffman colorings, and we use it to completely classify Hoffman colorability of cone graphs and line graphs. We also prove a partial converse, the Composition Theorem, leading to an algorithm for computing all connected Hoffman colorable graphs for some given number of vertices and colors. Since several graph coloring parameters are known to be sandwiched between the Hoffman bound and the chromatic number, as a byproduct of our results, we obtain the values of these chromatic parameters.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"710 \",\"pages\":\"Pages 129-150\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525000424\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000424","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

霍夫曼界是图的色数上一个著名的谱界,例如对于二部图来说是紧的。虽然霍夫曼着色(达到界的着色)以前对正则图进行了研究,但对一般图却知之甚少。我们研究了霍夫曼界的紧性,特别关注了不规则图,得到了关于霍夫曼着色图结构的几个结果。特别地,我们证明了一个表征Hoffman着色结构的分解定理,并利用它对锥图和线形图的Hoffman着色性进行了完整的分类。我们也证明了一个部分逆,合成定理,导致一个算法计算所有连通的霍夫曼可色图的一些给定数量的顶点和颜色。由于已知有几个图着色参数夹在霍夫曼界和色数之间,作为我们结果的副产品,我们得到了这些色参数的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hoffman colorings of graphs
Hoffman's bound is a well-known spectral bound on the chromatic number of a graph, known to be tight for instance for bipartite graphs. While Hoffman colorings (colorings attaining the bound) were studied before for regular graphs, for general graphs not much is known. We investigate tightness of the Hoffman bound, with a particular focus on irregular graphs, obtaining several results on the graph structure of Hoffman colorings. In particular, we prove a Decomposition Theorem, which characterizes the structure of Hoffman colorings, and we use it to completely classify Hoffman colorability of cone graphs and line graphs. We also prove a partial converse, the Composition Theorem, leading to an algorithm for computing all connected Hoffman colorable graphs for some given number of vertices and colors. Since several graph coloring parameters are known to be sandwiched between the Hoffman bound and the chromatic number, as a byproduct of our results, we obtain the values of these chromatic parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信