初等除数域上系统矩阵的Rosenbrock定理

IF 1 3区 数学 Q1 MATHEMATICS
Froilán M. Dopico , Vanni Noferini , Ion Zaballa
{"title":"初等除数域上系统矩阵的Rosenbrock定理","authors":"Froilán M. Dopico ,&nbsp;Vanni Noferini ,&nbsp;Ion Zaballa","doi":"10.1016/j.laa.2025.01.028","DOIUrl":null,"url":null,"abstract":"<div><div>Rosenbrock's theorem on polynomial system matrices is a classical result in linear systems theory that relates the Smith-McMillan form of a rational matrix <em>G</em> with the Smith form of an irreducible polynomial system matrix <em>P</em> giving rise to <em>G</em> and the Smith form of a submatrix of <em>P</em>. This theorem has been essential in the development of algorithms for computing the poles and zeros of a rational matrix via linearizations and generalized eigenvalue algorithms. In this paper, we extend Rosenbrock's theorem to system matrices <em>P</em> with entries in an arbitrary elementary divisor domain <span><math><mi>R</mi></math></span> and matrices <em>G</em> with entries in the field of fractions of <span><math><mi>R</mi></math></span>. These are the most general rings where the involved Smith-McMillan and Smith forms both exist and, so, where the problem makes sense. Moreover, we analyze in detail what happens when the system matrix is not irreducible. Finally, we explore how Rosenbrock's theorem can be extended when the system matrix <em>P</em> itself has entries in the field of fractions of the elementary divisor domain.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 10-49"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rosenbrock's theorem on system matrices over elementary divisor domains\",\"authors\":\"Froilán M. Dopico ,&nbsp;Vanni Noferini ,&nbsp;Ion Zaballa\",\"doi\":\"10.1016/j.laa.2025.01.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rosenbrock's theorem on polynomial system matrices is a classical result in linear systems theory that relates the Smith-McMillan form of a rational matrix <em>G</em> with the Smith form of an irreducible polynomial system matrix <em>P</em> giving rise to <em>G</em> and the Smith form of a submatrix of <em>P</em>. This theorem has been essential in the development of algorithms for computing the poles and zeros of a rational matrix via linearizations and generalized eigenvalue algorithms. In this paper, we extend Rosenbrock's theorem to system matrices <em>P</em> with entries in an arbitrary elementary divisor domain <span><math><mi>R</mi></math></span> and matrices <em>G</em> with entries in the field of fractions of <span><math><mi>R</mi></math></span>. These are the most general rings where the involved Smith-McMillan and Smith forms both exist and, so, where the problem makes sense. Moreover, we analyze in detail what happens when the system matrix is not irreducible. Finally, we explore how Rosenbrock's theorem can be extended when the system matrix <em>P</em> itself has entries in the field of fractions of the elementary divisor domain.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"710 \",\"pages\":\"Pages 10-49\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952500028X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952500028X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

关于多项式系统矩阵的Rosenbrock定理是线性系统理论中的一个经典结果,它将有理矩阵G的Smith- mcmillan形式与产生G的不可约多项式系统矩阵P的Smith形式以及P的子矩阵Smith形式联系起来。该定理在通过线性化和广义特征值算法计算有理矩阵的极点和零点的算法的发展中是必不可少的。在本文中,我们将Rosenbrock定理推广到具有任意初等除数域R中的项的系统矩阵P和具有R的分数域中的项的矩阵G。这些是最一般的环,其中涉及的Smith- mcmillan和Smith形式都存在,因此,问题是有意义的。此外,我们还详细分析了系统矩阵不可约时的情形。最后,我们探讨了当系统矩阵P本身在初等除数域的分数域中有元素时,Rosenbrock定理如何被推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rosenbrock's theorem on system matrices over elementary divisor domains
Rosenbrock's theorem on polynomial system matrices is a classical result in linear systems theory that relates the Smith-McMillan form of a rational matrix G with the Smith form of an irreducible polynomial system matrix P giving rise to G and the Smith form of a submatrix of P. This theorem has been essential in the development of algorithms for computing the poles and zeros of a rational matrix via linearizations and generalized eigenvalue algorithms. In this paper, we extend Rosenbrock's theorem to system matrices P with entries in an arbitrary elementary divisor domain R and matrices G with entries in the field of fractions of R. These are the most general rings where the involved Smith-McMillan and Smith forms both exist and, so, where the problem makes sense. Moreover, we analyze in detail what happens when the system matrix is not irreducible. Finally, we explore how Rosenbrock's theorem can be extended when the system matrix P itself has entries in the field of fractions of the elementary divisor domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信