{C(3,3),C(4,3)}自由图的最大a α-谱半径

IF 1 3区 数学 Q1 MATHEMATICS
S. Pirzada, Amir Rehman
{"title":"{C(3,3),C(4,3)}自由图的最大a α-谱半径","authors":"S. Pirzada,&nbsp;Amir Rehman","doi":"10.1016/j.laa.2025.01.023","DOIUrl":null,"url":null,"abstract":"<div><div>For a simple graph <em>G</em> and for any <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, Nikiforov defined the generalized adjacency matrix as <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are the adjacency and degree diagonal matrices of <em>G</em>, respectively. The largest eigenvalue of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called the generalized adjacency spectral radius (or <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius) of <em>G</em>. Let <span><math><mi>C</mi><mo>(</mo><mi>l</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> denote the graph obtained from <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> by superimposing an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> with an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. If a graph is free of both <span><math><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, we call it a <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graph. In this paper, we give a sharp upper bound on the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graphs for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. We show that the extremal graph attaining the bound is the 2-partite Turán graph.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 385-396"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Aα-spectral radius of {C(3,3),C(4,3)}-free graphs\",\"authors\":\"S. Pirzada,&nbsp;Amir Rehman\",\"doi\":\"10.1016/j.laa.2025.01.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a simple graph <em>G</em> and for any <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, Nikiforov defined the generalized adjacency matrix as <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are the adjacency and degree diagonal matrices of <em>G</em>, respectively. The largest eigenvalue of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called the generalized adjacency spectral radius (or <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius) of <em>G</em>. Let <span><math><mi>C</mi><mo>(</mo><mi>l</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> denote the graph obtained from <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> by superimposing an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> with an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. If a graph is free of both <span><math><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, we call it a <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graph. In this paper, we give a sharp upper bound on the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graphs for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. We show that the extremal graph attaining the bound is the 2-partite Turán graph.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"709 \",\"pages\":\"Pages 385-396\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525000230\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000230","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于简单图G,对于任意α∈[0,1],Nikiforov定义了广义邻接矩阵为a α(G)=αD(G)+(1−α) a (G),其中a (G)和D(G)分别是G的邻接矩阵和度对角矩阵。Aα(G)的最大特征值称为G的广义邻接谱半径(或称Aα-谱半径),设C(l,t)表示Cl的一条边与Ct的一条边叠加得到的由Cl和Ct得到的图。如果一个图不存在C(3,3)和C(4,3),我们称它为{C(3,3),C(4,3)}自由图。本文给出了α∈[0,12]的{C(3,3),C(4,3)}自由图的a α-谱半径的一个明显上界。我们证明了达到边界的极值图是二部Turán图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Aα-spectral radius of {C(3,3),C(4,3)}-free graphs
For a simple graph G and for any α[0,1], Nikiforov defined the generalized adjacency matrix as Aα(G)=αD(G)+(1α)A(G), where A(G) and D(G) are the adjacency and degree diagonal matrices of G, respectively. The largest eigenvalue of Aα(G) is called the generalized adjacency spectral radius (or Aα-spectral radius) of G. Let C(l,t) denote the graph obtained from Cl and Ct by superimposing an edge of Cl with an edge of Ct. If a graph is free of both C(3,3) and C(4,3), we call it a {C(3,3),C(4,3)}-free graph. In this paper, we give a sharp upper bound on the Aα-spectral radius of {C(3,3),C(4,3)}-free graphs for α[0,12). We show that the extremal graph attaining the bound is the 2-partite Turán graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信