{"title":"{C(3,3),C(4,3)}自由图的最大a α-谱半径","authors":"S. Pirzada, Amir Rehman","doi":"10.1016/j.laa.2025.01.023","DOIUrl":null,"url":null,"abstract":"<div><div>For a simple graph <em>G</em> and for any <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, Nikiforov defined the generalized adjacency matrix as <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are the adjacency and degree diagonal matrices of <em>G</em>, respectively. The largest eigenvalue of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called the generalized adjacency spectral radius (or <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius) of <em>G</em>. Let <span><math><mi>C</mi><mo>(</mo><mi>l</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> denote the graph obtained from <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> by superimposing an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> with an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. If a graph is free of both <span><math><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, we call it a <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graph. In this paper, we give a sharp upper bound on the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graphs for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. We show that the extremal graph attaining the bound is the 2-partite Turán graph.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 385-396"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Aα-spectral radius of {C(3,3),C(4,3)}-free graphs\",\"authors\":\"S. Pirzada, Amir Rehman\",\"doi\":\"10.1016/j.laa.2025.01.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a simple graph <em>G</em> and for any <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, Nikiforov defined the generalized adjacency matrix as <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>A</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are the adjacency and degree diagonal matrices of <em>G</em>, respectively. The largest eigenvalue of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is called the generalized adjacency spectral radius (or <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius) of <em>G</em>. Let <span><math><mi>C</mi><mo>(</mo><mi>l</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span> denote the graph obtained from <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> by superimposing an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> with an edge of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. If a graph is free of both <span><math><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>, we call it a <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graph. In this paper, we give a sharp upper bound on the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mo>{</mo><mi>C</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>,</mo><mi>C</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>)</mo><mo>}</mo></math></span>-free graphs for <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>. We show that the extremal graph attaining the bound is the 2-partite Turán graph.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"709 \",\"pages\":\"Pages 385-396\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525000230\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000230","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于简单图G,对于任意α∈[0,1],Nikiforov定义了广义邻接矩阵为a α(G)=αD(G)+(1−α) a (G),其中a (G)和D(G)分别是G的邻接矩阵和度对角矩阵。Aα(G)的最大特征值称为G的广义邻接谱半径(或称Aα-谱半径),设C(l,t)表示Cl的一条边与Ct的一条边叠加得到的由Cl和Ct得到的图。如果一个图不存在C(3,3)和C(4,3),我们称它为{C(3,3),C(4,3)}自由图。本文给出了α∈[0,12]的{C(3,3),C(4,3)}自由图的a α-谱半径的一个明显上界。我们证明了达到边界的极值图是二部Turán图。
Maximum Aα-spectral radius of {C(3,3),C(4,3)}-free graphs
For a simple graph G and for any , Nikiforov defined the generalized adjacency matrix as , where and are the adjacency and degree diagonal matrices of G, respectively. The largest eigenvalue of is called the generalized adjacency spectral radius (or -spectral radius) of G. Let denote the graph obtained from and by superimposing an edge of with an edge of . If a graph is free of both and , we call it a -free graph. In this paper, we give a sharp upper bound on the -spectral radius of -free graphs for . We show that the extremal graph attaining the bound is the 2-partite Turán graph.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.