{"title":"产pufa微藻Schizochytrium sp. ATCC 20888中EPA和DHA比例的调控机制:从生物合成和储存分配角度","authors":"Yaqi Xu, Zhao Zhang, Yanqing Bian, Yuanhao Wang, Ziliang Deng, Rui Luo, Weijia Li, Jingyi Yan, Baohua Zhao, Dongzhe Sun","doi":"10.1021/acs.jafc.4c12478","DOIUrl":null,"url":null,"abstract":"<i>Schizochytrium</i> sp. ATCC 20888 is an important species for industrial polyunsaturated fatty acids (PUFA) production. This study investigated the regulatory mechanisms affecting the proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in terms of biosynthesis and storage distribution. EPA and DHA possessed different accumulation patterns: EPA proportion increased over time, while DHA peaked at 48 h. EPA was predominantly integrated into triacylglycerol during the logarithmic phase and phosphatidylcholine during the stationary phase. Transcriptome analysis revealed that EPA synthesis involved the fatty acid synthase–elongase/desaturase system, while DHA depended mainly on PUFA synthase. Key enzymes, including elongase ELOVL7, diacylglycerol acyltransferase (g10562), and lysophosphatidylcholine acyltransferases (g8836 and g7540), show a positive correlation with EPA yield, highlighting their roles in its biosynthesis and storage. Additionally, phosphopantetheine adenylyl transferase (PPAT/COASY) and ADP-ribosylation factor 1_2 (ARF1_2) were identified as potential regulators of PUFA proportions. This study provided insights for genetic optimization of PUFA production in<i>Schizochytrium</i>.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"165 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulatory Mechanisms of EPA and DHA Proportions in a PUFA-Producing Microalga, Schizochytrium sp. ATCC 20888: From the Biosynthesis and Storage Distribution Aspects\",\"authors\":\"Yaqi Xu, Zhao Zhang, Yanqing Bian, Yuanhao Wang, Ziliang Deng, Rui Luo, Weijia Li, Jingyi Yan, Baohua Zhao, Dongzhe Sun\",\"doi\":\"10.1021/acs.jafc.4c12478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Schizochytrium</i> sp. ATCC 20888 is an important species for industrial polyunsaturated fatty acids (PUFA) production. This study investigated the regulatory mechanisms affecting the proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in terms of biosynthesis and storage distribution. EPA and DHA possessed different accumulation patterns: EPA proportion increased over time, while DHA peaked at 48 h. EPA was predominantly integrated into triacylglycerol during the logarithmic phase and phosphatidylcholine during the stationary phase. Transcriptome analysis revealed that EPA synthesis involved the fatty acid synthase–elongase/desaturase system, while DHA depended mainly on PUFA synthase. Key enzymes, including elongase ELOVL7, diacylglycerol acyltransferase (g10562), and lysophosphatidylcholine acyltransferases (g8836 and g7540), show a positive correlation with EPA yield, highlighting their roles in its biosynthesis and storage. Additionally, phosphopantetheine adenylyl transferase (PPAT/COASY) and ADP-ribosylation factor 1_2 (ARF1_2) were identified as potential regulators of PUFA proportions. This study provided insights for genetic optimization of PUFA production in<i>Schizochytrium</i>.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c12478\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c12478","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Regulatory Mechanisms of EPA and DHA Proportions in a PUFA-Producing Microalga, Schizochytrium sp. ATCC 20888: From the Biosynthesis and Storage Distribution Aspects
Schizochytrium sp. ATCC 20888 is an important species for industrial polyunsaturated fatty acids (PUFA) production. This study investigated the regulatory mechanisms affecting the proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in terms of biosynthesis and storage distribution. EPA and DHA possessed different accumulation patterns: EPA proportion increased over time, while DHA peaked at 48 h. EPA was predominantly integrated into triacylglycerol during the logarithmic phase and phosphatidylcholine during the stationary phase. Transcriptome analysis revealed that EPA synthesis involved the fatty acid synthase–elongase/desaturase system, while DHA depended mainly on PUFA synthase. Key enzymes, including elongase ELOVL7, diacylglycerol acyltransferase (g10562), and lysophosphatidylcholine acyltransferases (g8836 and g7540), show a positive correlation with EPA yield, highlighting their roles in its biosynthesis and storage. Additionally, phosphopantetheine adenylyl transferase (PPAT/COASY) and ADP-ribosylation factor 1_2 (ARF1_2) were identified as potential regulators of PUFA proportions. This study provided insights for genetic optimization of PUFA production inSchizochytrium.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.