饲料蛋白脂比和昆虫粕对湖白鱼生长性能、饲料利用和肠道微生物群的影响

IF 3 2区 农林科学 Q1 FISHERIES
Rebecca Lawson, Yubing Chen, Junyu Zhang, Marcia A. Chiasson, Jennifer Ellis, Dominique Bureau, Richard D. Moccia, David Huyben
{"title":"饲料蛋白脂比和昆虫粕对湖白鱼生长性能、饲料利用和肠道微生物群的影响","authors":"Rebecca Lawson,&nbsp;Yubing Chen,&nbsp;Junyu Zhang,&nbsp;Marcia A. Chiasson,&nbsp;Jennifer Ellis,&nbsp;Dominique Bureau,&nbsp;Richard D. Moccia,&nbsp;David Huyben","doi":"10.1155/anu/5511161","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Wild stocks of lake whitefish (<i>Coregonus clupeaformis</i>) are declining in the Great Lakes, and there is a lack of information on their nutritional requirements and gut health indicators to effectively culture them in an aquaculture setting. The aim of this study was to evaluate the growth performance, nutrient utilization, and gut microbiome of lake whitefish fed varying protein:lipid ratios with and without the inclusion of insect meal from black soldier fly (BSF). In total, 450 lake whitefish (301 ± 10 g) were fed one of five diets with differing protein-to-lipid ratios (high-protein 54%, low-protein 48%, high-lipid 18%, or low-lipid 12%), and an additional commercial control rainbow trout diet (Bluewater commercial control [BCC]). High-protein diets included 5% BSF meal to explore its potential to partially replace fishmeal in the diet. After 16 weeks at 8.5°C, growth performance and nutrient digestibility were the highest for lake whitefish fed the high-protein–high-lipid (HPHL) and BCC diets, while the feed conversion ratio (FCR) was numerically lowest for the HPHL. Protein and energy retention, and lipid digestibility were highest for fish fed the HPHL and BCC diets, while the BCC diet had the highest lipid retained, concomitant with high viscerosomatic index (VSI). High lipid in fish, especially in the viscera that is removed during processing, is not desirable, thus the HPHL diet is recommended. The gut microbiome was dominated by Proteobacteria, specifically by the genera of <i>Shewanella</i> and <i>Aeromonas</i>, although feeding high-lipid diets resulted in the lowest alpha diversity, but was not significant. These results are novel for this species, and we recommend that lake whitefish diets should be formulated to have a minimum 54:18 protein-to-lipid ratio. The results from this study provide baseline information on the nutrition and gut microbiome of lake whitefish, which can be used to develop a species-specific feed rather than feeding them rainbow trout feed. However, further work on targeted breeding and genetic selection of broodstock, together with diet optimization, is needed to improve the growth performance and nutrient utilization in order to enable an effective, economical, and environmentally sustainable culture of lake whitefish.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/5511161","citationCount":"0","resultStr":"{\"title\":\"Effects of Dietary Protein to Lipid Ratio and Insect Meal on Growth Performance, Feed Utilization, and the Gut Microbiome of Lake Whitefish (Coregonus clupeaformis)\",\"authors\":\"Rebecca Lawson,&nbsp;Yubing Chen,&nbsp;Junyu Zhang,&nbsp;Marcia A. Chiasson,&nbsp;Jennifer Ellis,&nbsp;Dominique Bureau,&nbsp;Richard D. Moccia,&nbsp;David Huyben\",\"doi\":\"10.1155/anu/5511161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Wild stocks of lake whitefish (<i>Coregonus clupeaformis</i>) are declining in the Great Lakes, and there is a lack of information on their nutritional requirements and gut health indicators to effectively culture them in an aquaculture setting. The aim of this study was to evaluate the growth performance, nutrient utilization, and gut microbiome of lake whitefish fed varying protein:lipid ratios with and without the inclusion of insect meal from black soldier fly (BSF). In total, 450 lake whitefish (301 ± 10 g) were fed one of five diets with differing protein-to-lipid ratios (high-protein 54%, low-protein 48%, high-lipid 18%, or low-lipid 12%), and an additional commercial control rainbow trout diet (Bluewater commercial control [BCC]). High-protein diets included 5% BSF meal to explore its potential to partially replace fishmeal in the diet. After 16 weeks at 8.5°C, growth performance and nutrient digestibility were the highest for lake whitefish fed the high-protein–high-lipid (HPHL) and BCC diets, while the feed conversion ratio (FCR) was numerically lowest for the HPHL. Protein and energy retention, and lipid digestibility were highest for fish fed the HPHL and BCC diets, while the BCC diet had the highest lipid retained, concomitant with high viscerosomatic index (VSI). High lipid in fish, especially in the viscera that is removed during processing, is not desirable, thus the HPHL diet is recommended. The gut microbiome was dominated by Proteobacteria, specifically by the genera of <i>Shewanella</i> and <i>Aeromonas</i>, although feeding high-lipid diets resulted in the lowest alpha diversity, but was not significant. These results are novel for this species, and we recommend that lake whitefish diets should be formulated to have a minimum 54:18 protein-to-lipid ratio. The results from this study provide baseline information on the nutrition and gut microbiome of lake whitefish, which can be used to develop a species-specific feed rather than feeding them rainbow trout feed. However, further work on targeted breeding and genetic selection of broodstock, together with diet optimization, is needed to improve the growth performance and nutrient utilization in order to enable an effective, economical, and environmentally sustainable culture of lake whitefish.</p>\\n </div>\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/5511161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/anu/5511161\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/5511161","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

五大湖湖泊白鱼(Coregonus clupeaformis)的野生种群正在减少,而且缺乏关于其营养需求和肠道健康指标的信息,无法在水产养殖环境中有效地培养它们。本试验旨在研究不同蛋白脂比饲喂和不添加黑虻虫粕对湖白鱼生长性能、营养物质利用和肠道微生物组的影响。试验选取450尾湖白鲑(301±10 g),分别饲喂5种不同蛋白脂比(高蛋白54%、低蛋白48%、高脂18%、低脂12%)的饲料,外加一种商业对照虹鳟鱼饲料(蓝水商业对照[BCC])。在高蛋白饲料中加入5%的BSF粉,以探索其在饲料中部分替代鱼粉的潜力。在8.5°C环境下饲养16周后,高蛋白-高脂(HPHL)和BCC饲料的生长性能和营养物质消化率最高,而HPHL饲料的饲料系数(FCR)最低。HPHL和BCC饲料的蛋白质和能量保留率以及脂肪消化率最高,而BCC饲料的脂肪保留率最高,并具有较高的内脏体指数(VSI)。鱼的高脂,尤其是加工过程中去除的内脏,是不可取的,因此推荐高脂饮食。肠道微生物组以变形菌属为主,特别是希瓦氏菌属和风单胞菌属,虽然饲喂高脂饲料导致α多样性最低,但不显著。这些结果对该物种来说是新的,我们建议湖白鱼饲料的蛋白质/脂肪比应至少为54:18。这项研究的结果提供了关于湖白鱼营养和肠道微生物组的基线信息,可用于开发一种物种特异性饲料,而不是给它们喂虹鳟饲料。然而,为了实现湖白鱼高效、经济、环境可持续的养殖,需要进一步开展有针对性的育种和遗传选择工作,并优化饲料,提高生长性能和养分利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Dietary Protein to Lipid Ratio and Insect Meal on Growth Performance, Feed Utilization, and the Gut Microbiome of Lake Whitefish (Coregonus clupeaformis)

Effects of Dietary Protein to Lipid Ratio and Insect Meal on Growth Performance, Feed Utilization, and the Gut Microbiome of Lake Whitefish (Coregonus clupeaformis)

Wild stocks of lake whitefish (Coregonus clupeaformis) are declining in the Great Lakes, and there is a lack of information on their nutritional requirements and gut health indicators to effectively culture them in an aquaculture setting. The aim of this study was to evaluate the growth performance, nutrient utilization, and gut microbiome of lake whitefish fed varying protein:lipid ratios with and without the inclusion of insect meal from black soldier fly (BSF). In total, 450 lake whitefish (301 ± 10 g) were fed one of five diets with differing protein-to-lipid ratios (high-protein 54%, low-protein 48%, high-lipid 18%, or low-lipid 12%), and an additional commercial control rainbow trout diet (Bluewater commercial control [BCC]). High-protein diets included 5% BSF meal to explore its potential to partially replace fishmeal in the diet. After 16 weeks at 8.5°C, growth performance and nutrient digestibility were the highest for lake whitefish fed the high-protein–high-lipid (HPHL) and BCC diets, while the feed conversion ratio (FCR) was numerically lowest for the HPHL. Protein and energy retention, and lipid digestibility were highest for fish fed the HPHL and BCC diets, while the BCC diet had the highest lipid retained, concomitant with high viscerosomatic index (VSI). High lipid in fish, especially in the viscera that is removed during processing, is not desirable, thus the HPHL diet is recommended. The gut microbiome was dominated by Proteobacteria, specifically by the genera of Shewanella and Aeromonas, although feeding high-lipid diets resulted in the lowest alpha diversity, but was not significant. These results are novel for this species, and we recommend that lake whitefish diets should be formulated to have a minimum 54:18 protein-to-lipid ratio. The results from this study provide baseline information on the nutrition and gut microbiome of lake whitefish, which can be used to develop a species-specific feed rather than feeding them rainbow trout feed. However, further work on targeted breeding and genetic selection of broodstock, together with diet optimization, is needed to improve the growth performance and nutrient utilization in order to enable an effective, economical, and environmentally sustainable culture of lake whitefish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信