Anastasie Musabyemungu, Jaindra Nath Tripathi, Samwel K. Muiruri, Svetlana V. Gaidashova, Placide Rukundo, Leena Tripathi
{"title":"东非香蕉抗黄萎病的遗传改良","authors":"Anastasie Musabyemungu, Jaindra Nath Tripathi, Samwel K. Muiruri, Svetlana V. Gaidashova, Placide Rukundo, Leena Tripathi","doi":"10.1002/fes3.70048","DOIUrl":null,"url":null,"abstract":"<p>Banana (<i>Musa</i> spp.) is a staple food and income generation crop, feeding millions worldwide. However, the cultivation of bananas is challenging due to biotic and abiotic production constraints. Among these factors are pests and diseases, especially banana bacterial disease. Banana Xanthomonas wilt (BXW), caused by <i>Xanthomonas campestris</i> pathovar <i>musacearum</i> (Xcm), has the most significant detrimental economic effect on East African banana production. The infection of BXW is rapid and severe; its impact increases over time and causes huge banana yield losses. The Xcm infects and causes disease in all types of bananas except the wild diploid type <i>Musa balbisiana</i>, which is resistant boosting plant immunity for controlling Xcm and other diseases in bananas. Resistant cultivars are the best promising management option for controlling Xcm and other diseases in bananas. All the cultivated bananas are sterile, and have a long generation cycle, which complicates their improvement through conventional breeding. Biotechnological approaches to banana improvement can complement conventional breeding by overcoming some of its challenges. Additionally, genetic engineering could speed up the process of crop improvement, especially for sterile seedless crops like bananas. It is also specific to the target gene and precise modification that avoids unwanted genes in the normal breeding process. Recent developments using genetic engineering and genome editing on bananas have been initiated to tackle these issues. This review article focuses on the challenges of traditional breeding and the progress of genetic engineering and genome editing approaches, aiming to enhance understanding of achieving an essential genetic gain of bananas against the BXW. This understanding is crucial for enhancing food security in East Africa and globally.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"14 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.70048","citationCount":"0","resultStr":"{\"title\":\"Genetic Improvement of Banana for Resistance to Xanthomonas Wilt in East Africa\",\"authors\":\"Anastasie Musabyemungu, Jaindra Nath Tripathi, Samwel K. Muiruri, Svetlana V. Gaidashova, Placide Rukundo, Leena Tripathi\",\"doi\":\"10.1002/fes3.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Banana (<i>Musa</i> spp.) is a staple food and income generation crop, feeding millions worldwide. However, the cultivation of bananas is challenging due to biotic and abiotic production constraints. Among these factors are pests and diseases, especially banana bacterial disease. Banana Xanthomonas wilt (BXW), caused by <i>Xanthomonas campestris</i> pathovar <i>musacearum</i> (Xcm), has the most significant detrimental economic effect on East African banana production. The infection of BXW is rapid and severe; its impact increases over time and causes huge banana yield losses. The Xcm infects and causes disease in all types of bananas except the wild diploid type <i>Musa balbisiana</i>, which is resistant boosting plant immunity for controlling Xcm and other diseases in bananas. Resistant cultivars are the best promising management option for controlling Xcm and other diseases in bananas. All the cultivated bananas are sterile, and have a long generation cycle, which complicates their improvement through conventional breeding. Biotechnological approaches to banana improvement can complement conventional breeding by overcoming some of its challenges. Additionally, genetic engineering could speed up the process of crop improvement, especially for sterile seedless crops like bananas. It is also specific to the target gene and precise modification that avoids unwanted genes in the normal breeding process. Recent developments using genetic engineering and genome editing on bananas have been initiated to tackle these issues. This review article focuses on the challenges of traditional breeding and the progress of genetic engineering and genome editing approaches, aiming to enhance understanding of achieving an essential genetic gain of bananas against the BXW. This understanding is crucial for enhancing food security in East Africa and globally.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.70048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.70048\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.70048","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Genetic Improvement of Banana for Resistance to Xanthomonas Wilt in East Africa
Banana (Musa spp.) is a staple food and income generation crop, feeding millions worldwide. However, the cultivation of bananas is challenging due to biotic and abiotic production constraints. Among these factors are pests and diseases, especially banana bacterial disease. Banana Xanthomonas wilt (BXW), caused by Xanthomonas campestris pathovar musacearum (Xcm), has the most significant detrimental economic effect on East African banana production. The infection of BXW is rapid and severe; its impact increases over time and causes huge banana yield losses. The Xcm infects and causes disease in all types of bananas except the wild diploid type Musa balbisiana, which is resistant boosting plant immunity for controlling Xcm and other diseases in bananas. Resistant cultivars are the best promising management option for controlling Xcm and other diseases in bananas. All the cultivated bananas are sterile, and have a long generation cycle, which complicates their improvement through conventional breeding. Biotechnological approaches to banana improvement can complement conventional breeding by overcoming some of its challenges. Additionally, genetic engineering could speed up the process of crop improvement, especially for sterile seedless crops like bananas. It is also specific to the target gene and precise modification that avoids unwanted genes in the normal breeding process. Recent developments using genetic engineering and genome editing on bananas have been initiated to tackle these issues. This review article focuses on the challenges of traditional breeding and the progress of genetic engineering and genome editing approaches, aiming to enhance understanding of achieving an essential genetic gain of bananas against the BXW. This understanding is crucial for enhancing food security in East Africa and globally.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology