高性能量子点发光二极管的分子偶极子界面工程

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kuibao Yu, Hailong Hu, Yuanhang Li, Wenjuan Huang, Yuan Qie, Chao Zhong, Tao Chen, Renjie Li, Tailiang Guo and Fushan Li
{"title":"高性能量子点发光二极管的分子偶极子界面工程","authors":"Kuibao Yu, Hailong Hu, Yuanhang Li, Wenjuan Huang, Yuan Qie, Chao Zhong, Tao Chen, Renjie Li, Tailiang Guo and Fushan Li","doi":"10.1039/D4TC04183F","DOIUrl":null,"url":null,"abstract":"<p >Balancing carrier injection <em>via</em> improving hole injection capability plays a key role in high-performance quantum dot light-emitting diodes (QLEDs). Herein, a self-assembled monolayer of carbazole-based derivatives is utilized to construct a dipole functional layer at the interface between the hole transport layer (HTL) and quantum dots (QDs) to facilitate hole injection. Additionally, rational interface engineering significantly reduces the trap-state density because of the highly ordered molecular arrangement. The resultant QLEDs present the promising maximum external quantum efficiency (EQE) of 25.03%, which is remarkably higher than that of the control ones (20.58%). The optimized device shows outstanding stability and a long operation lifetime (<em>T</em><small><sub>95</sub></small> lifetime at 1000 cd m<small><sup>−2</sup></small>, 14 695 h) in the air. This simple strategy presents how to increase hole injection by constructing a dipole interface and optimizing molecular arrangement to improve the performance of QLEDs.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 4","pages":" 1668-1674"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dipole interfacial engineering for high-performance quantum-dot light-emitting diodes†\",\"authors\":\"Kuibao Yu, Hailong Hu, Yuanhang Li, Wenjuan Huang, Yuan Qie, Chao Zhong, Tao Chen, Renjie Li, Tailiang Guo and Fushan Li\",\"doi\":\"10.1039/D4TC04183F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Balancing carrier injection <em>via</em> improving hole injection capability plays a key role in high-performance quantum dot light-emitting diodes (QLEDs). Herein, a self-assembled monolayer of carbazole-based derivatives is utilized to construct a dipole functional layer at the interface between the hole transport layer (HTL) and quantum dots (QDs) to facilitate hole injection. Additionally, rational interface engineering significantly reduces the trap-state density because of the highly ordered molecular arrangement. The resultant QLEDs present the promising maximum external quantum efficiency (EQE) of 25.03%, which is remarkably higher than that of the control ones (20.58%). The optimized device shows outstanding stability and a long operation lifetime (<em>T</em><small><sub>95</sub></small> lifetime at 1000 cd m<small><sup>−2</sup></small>, 14 695 h) in the air. This simple strategy presents how to increase hole injection by constructing a dipole interface and optimizing molecular arrangement to improve the performance of QLEDs.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 4\",\"pages\":\" 1668-1674\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04183f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04183f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过提高空穴注入能力来平衡载流子注入是高性能量子点发光二极管的关键。本文利用咔唑类衍生物的自组装单层在空穴传输层(HTL)和量子点(QDs)之间的界面处构建偶极子功能层,以促进空穴注入。此外,由于分子排列高度有序,合理的界面工程显著降低了陷阱态密度。所得qled的最大外量子效率(EQE)为25.03%,显著高于对照组(20.58%)。优化后的器件在空气中表现出出色的稳定性和较长的工作寿命(T95寿命在1000 cd m−2,14 695 h)。这种简单的策略提出了如何通过构建偶极子界面和优化分子排列来增加空穴注入以提高qled的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular dipole interfacial engineering for high-performance quantum-dot light-emitting diodes†

Molecular dipole interfacial engineering for high-performance quantum-dot light-emitting diodes†

Balancing carrier injection via improving hole injection capability plays a key role in high-performance quantum dot light-emitting diodes (QLEDs). Herein, a self-assembled monolayer of carbazole-based derivatives is utilized to construct a dipole functional layer at the interface between the hole transport layer (HTL) and quantum dots (QDs) to facilitate hole injection. Additionally, rational interface engineering significantly reduces the trap-state density because of the highly ordered molecular arrangement. The resultant QLEDs present the promising maximum external quantum efficiency (EQE) of 25.03%, which is remarkably higher than that of the control ones (20.58%). The optimized device shows outstanding stability and a long operation lifetime (T95 lifetime at 1000 cd m−2, 14 695 h) in the air. This simple strategy presents how to increase hole injection by constructing a dipole interface and optimizing molecular arrangement to improve the performance of QLEDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信