{"title":"三维光声成像系统的趋势与发展:最新进展综述","authors":"Fikhri Astina Tasmara , Mitrayana Mitrayana , Andreas Setiawan , Takuro Ishii , Yoshifumi Saijo , Rini Widyaningrum","doi":"10.1016/j.medengphy.2024.104268","DOIUrl":null,"url":null,"abstract":"<div><div>Photoacoustic imaging (PAI) is a non-invasive diagnostic imaging technique that utilizes the photoacoustic effect by combining optical and ultrasound imaging systems. The development of PAI is mostly centered on the generation of a high-quality 3D reconstruction system for more optimal and accurate identification of tissue abnormalities. This literature study was conducted to analyze the 3D image reconstruction in PAI over 2017–2024. In this review, the collected articles in 3D photoacoustic imaging were categorized based on the approach, design, and purpose of each study. Firstly, the approaches of the studies were classified into three groups: experimental studies, numerical simulation, and numerical simulation with experimental validation. Secondly, the design of the study was assessed based on the photoacoustic modality, laser type, and sensing mechanism. Thirdly, the purpose of the collected studies was summarized into seven subsections, including image quality improvement, frame rate improvement, image segmentation, system integration, inter-systems comparisons, improving computational efficiency, and portable system development. The results of this review revealed that the 3D PAI systems have been developed by various research groups, suggesting the investigation of numerous biological objects. Therefore, 3D PAI has the potential to contribute a wide range of novel biological imaging systems that support real-time biomedical imaging in the future.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"135 ","pages":"Article 104268"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trends and developments in 3D photoacoustic imaging systems: A review of recent progress\",\"authors\":\"Fikhri Astina Tasmara , Mitrayana Mitrayana , Andreas Setiawan , Takuro Ishii , Yoshifumi Saijo , Rini Widyaningrum\",\"doi\":\"10.1016/j.medengphy.2024.104268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photoacoustic imaging (PAI) is a non-invasive diagnostic imaging technique that utilizes the photoacoustic effect by combining optical and ultrasound imaging systems. The development of PAI is mostly centered on the generation of a high-quality 3D reconstruction system for more optimal and accurate identification of tissue abnormalities. This literature study was conducted to analyze the 3D image reconstruction in PAI over 2017–2024. In this review, the collected articles in 3D photoacoustic imaging were categorized based on the approach, design, and purpose of each study. Firstly, the approaches of the studies were classified into three groups: experimental studies, numerical simulation, and numerical simulation with experimental validation. Secondly, the design of the study was assessed based on the photoacoustic modality, laser type, and sensing mechanism. Thirdly, the purpose of the collected studies was summarized into seven subsections, including image quality improvement, frame rate improvement, image segmentation, system integration, inter-systems comparisons, improving computational efficiency, and portable system development. The results of this review revealed that the 3D PAI systems have been developed by various research groups, suggesting the investigation of numerous biological objects. Therefore, 3D PAI has the potential to contribute a wide range of novel biological imaging systems that support real-time biomedical imaging in the future.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"135 \",\"pages\":\"Article 104268\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001656\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001656","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Trends and developments in 3D photoacoustic imaging systems: A review of recent progress
Photoacoustic imaging (PAI) is a non-invasive diagnostic imaging technique that utilizes the photoacoustic effect by combining optical and ultrasound imaging systems. The development of PAI is mostly centered on the generation of a high-quality 3D reconstruction system for more optimal and accurate identification of tissue abnormalities. This literature study was conducted to analyze the 3D image reconstruction in PAI over 2017–2024. In this review, the collected articles in 3D photoacoustic imaging were categorized based on the approach, design, and purpose of each study. Firstly, the approaches of the studies were classified into three groups: experimental studies, numerical simulation, and numerical simulation with experimental validation. Secondly, the design of the study was assessed based on the photoacoustic modality, laser type, and sensing mechanism. Thirdly, the purpose of the collected studies was summarized into seven subsections, including image quality improvement, frame rate improvement, image segmentation, system integration, inter-systems comparisons, improving computational efficiency, and portable system development. The results of this review revealed that the 3D PAI systems have been developed by various research groups, suggesting the investigation of numerous biological objects. Therefore, 3D PAI has the potential to contribute a wide range of novel biological imaging systems that support real-time biomedical imaging in the future.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.