先验自由的三维人体姿态估计在视频中使用肢体向量

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Anam Memon , Qasim Arain , Nasrullah Pirzada , Akram Shaikh , Adel Sulaiman , Mana Saleh Al Reshan , Hani Alshahrani , Asadullah Shaikh
{"title":"先验自由的三维人体姿态估计在视频中使用肢体向量","authors":"Anam Memon ,&nbsp;Qasim Arain ,&nbsp;Nasrullah Pirzada ,&nbsp;Akram Shaikh ,&nbsp;Adel Sulaiman ,&nbsp;Mana Saleh Al Reshan ,&nbsp;Hani Alshahrani ,&nbsp;Asadullah Shaikh","doi":"10.1016/j.icte.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating accurate 3D human poses from a monocular video is fundamental to various computer vision tasks. Existing methods exploit 2D-to-3D pose lifting, multiview images, and depth sensors to model spatio-temporal dependencies. However, depth ambiguities, occlusions, and larger temporal receptive fields pose challenges to these approaches. To address this, we propose a novel prior-free DCNN-based 3D human pose estimation method for monocular image sequences using limb vectors. Our method comprises two subnetworks: a limb direction estimator and a limb length estimator. The limb direction estimator utilizes a fully convolutional network to model limb direction vectors across a temporal window. We show that network complexity can be significantly reduced by utilizing dilated convolutional operations and a relatively smaller receptive field while maintaining estimation accuracy. Moreover, the limb length estimator captures stable limb length estimations from a reliable frame set. Our model has shown superior performance compared to existing methods on the Human3.6M and MPI-INF-3DHP datasets.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 6","pages":"Pages 1266-1272"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prior-free 3D human pose estimation in a video using limb-vectors\",\"authors\":\"Anam Memon ,&nbsp;Qasim Arain ,&nbsp;Nasrullah Pirzada ,&nbsp;Akram Shaikh ,&nbsp;Adel Sulaiman ,&nbsp;Mana Saleh Al Reshan ,&nbsp;Hani Alshahrani ,&nbsp;Asadullah Shaikh\",\"doi\":\"10.1016/j.icte.2024.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Estimating accurate 3D human poses from a monocular video is fundamental to various computer vision tasks. Existing methods exploit 2D-to-3D pose lifting, multiview images, and depth sensors to model spatio-temporal dependencies. However, depth ambiguities, occlusions, and larger temporal receptive fields pose challenges to these approaches. To address this, we propose a novel prior-free DCNN-based 3D human pose estimation method for monocular image sequences using limb vectors. Our method comprises two subnetworks: a limb direction estimator and a limb length estimator. The limb direction estimator utilizes a fully convolutional network to model limb direction vectors across a temporal window. We show that network complexity can be significantly reduced by utilizing dilated convolutional operations and a relatively smaller receptive field while maintaining estimation accuracy. Moreover, the limb length estimator captures stable limb length estimations from a reliable frame set. Our model has shown superior performance compared to existing methods on the Human3.6M and MPI-INF-3DHP datasets.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 6\",\"pages\":\"Pages 1266-1272\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524001188\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001188","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

从单目视频中估计准确的3D人体姿势是各种计算机视觉任务的基础。现有的方法利用2d到3d姿态提升、多视图图像和深度传感器来建模时空依赖性。然而,深度模糊、闭塞和较大的颞感受野对这些方法提出了挑战。为了解决这个问题,我们提出了一种新的基于肢体向量的无先验dcnn的单眼图像序列三维人体姿态估计方法。我们的方法包括两个子网络:一个肢体方向估计器和一个肢体长度估计器。肢体方向估计器利用全卷积网络跨时间窗口建模肢体方向向量。我们表明,在保持估计精度的同时,利用扩展卷积操作和相对较小的接受域可以显着降低网络复杂性。此外,残肢长度估计器从可靠的帧集中捕获稳定的残肢长度估计。与现有方法相比,我们的模型在Human3.6M和MPI-INF-3DHP数据集上表现出了优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prior-free 3D human pose estimation in a video using limb-vectors
Estimating accurate 3D human poses from a monocular video is fundamental to various computer vision tasks. Existing methods exploit 2D-to-3D pose lifting, multiview images, and depth sensors to model spatio-temporal dependencies. However, depth ambiguities, occlusions, and larger temporal receptive fields pose challenges to these approaches. To address this, we propose a novel prior-free DCNN-based 3D human pose estimation method for monocular image sequences using limb vectors. Our method comprises two subnetworks: a limb direction estimator and a limb length estimator. The limb direction estimator utilizes a fully convolutional network to model limb direction vectors across a temporal window. We show that network complexity can be significantly reduced by utilizing dilated convolutional operations and a relatively smaller receptive field while maintaining estimation accuracy. Moreover, the limb length estimator captures stable limb length estimations from a reliable frame set. Our model has shown superior performance compared to existing methods on the Human3.6M and MPI-INF-3DHP datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信