基于图挖掘的分析COVID-19错误信息传播者Twitter社区动态的方法

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Asma Ul Hussna , Risul Islam , Md Golam Rabiul Alam , Jia Uddin , Imran Ashraf , Md Abdus Samad
{"title":"基于图挖掘的分析COVID-19错误信息传播者Twitter社区动态的方法","authors":"Asma Ul Hussna ,&nbsp;Risul Islam ,&nbsp;Md Golam Rabiul Alam ,&nbsp;Jia Uddin ,&nbsp;Imran Ashraf ,&nbsp;Md Abdus Samad","doi":"10.1016/j.icte.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the global problem of misinformation dissemination on social media, particularly Twitter, due to the COVID-19 pandemic. It identifies prominent disseminators, investigates the spread of false information and the ecosystem of disinformation spreaders, and assesses their online personalities. We track the interaction among fake news spreaders using the User–User Interaction Graph. The study reveals a rapidly growing population of disseminators, including professional spreaders, with over 3% dominating the others. The collaboration among fake news spreaders is high, highlighting the need for further research using publicly available online data to understand the community spreading malicious misinformation about COVID-19.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 6","pages":"Pages 1280-1287"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph mining-based approach to analyze the dynamics of the Twitter community of COVID-19 misinformation disseminators\",\"authors\":\"Asma Ul Hussna ,&nbsp;Risul Islam ,&nbsp;Md Golam Rabiul Alam ,&nbsp;Jia Uddin ,&nbsp;Imran Ashraf ,&nbsp;Md Abdus Samad\",\"doi\":\"10.1016/j.icte.2024.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the global problem of misinformation dissemination on social media, particularly Twitter, due to the COVID-19 pandemic. It identifies prominent disseminators, investigates the spread of false information and the ecosystem of disinformation spreaders, and assesses their online personalities. We track the interaction among fake news spreaders using the User–User Interaction Graph. The study reveals a rapidly growing population of disseminators, including professional spreaders, with over 3% dominating the others. The collaboration among fake news spreaders is high, highlighting the need for further research using publicly available online data to understand the community spreading malicious misinformation about COVID-19.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 6\",\"pages\":\"Pages 1280-1287\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959524001358\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001358","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了由于COVID-19大流行而在社交媒体,特别是Twitter上传播错误信息的全球问题。它识别突出的传播者,调查虚假信息的传播和虚假信息传播者的生态系统,并评估他们的在线个性。我们使用用户-用户交互图来跟踪假新闻传播者之间的交互。研究显示,包括专业传播者在内的传播者人数迅速增长,占比超过3%。假新闻传播者之间的合作程度很高,这突显出有必要利用公开的在线数据进行进一步研究,以了解传播有关COVID-19的恶意错误信息的社区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graph mining-based approach to analyze the dynamics of the Twitter community of COVID-19 misinformation disseminators
This study explores the global problem of misinformation dissemination on social media, particularly Twitter, due to the COVID-19 pandemic. It identifies prominent disseminators, investigates the spread of false information and the ecosystem of disinformation spreaders, and assesses their online personalities. We track the interaction among fake news spreaders using the User–User Interaction Graph. The study reveals a rapidly growing population of disseminators, including professional spreaders, with over 3% dominating the others. The collaboration among fake news spreaders is high, highlighting the need for further research using publicly available online data to understand the community spreading malicious misinformation about COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信