Can Gao, Mengxuan Li, Jing Tan, Zhiming Wang, Jing Xu, Wenwen Li, Feng Shi, Zhenzhen Chen, Rong Cai
{"title":"酸可切割三磷酸鸟苷-光亲和探针用于三磷酸鸟苷结合蛋白及其活性位点的全局分析","authors":"Can Gao, Mengxuan Li, Jing Tan, Zhiming Wang, Jing Xu, Wenwen Li, Feng Shi, Zhenzhen Chen, Rong Cai","doi":"10.1021/acs.analchem.4c04827","DOIUrl":null,"url":null,"abstract":"Guanosine triphosphate (GTP)-binding proteins function as molecular switches in cell signaling, playing critical roles in various biological pathways. Their dysregulation is associated with the causes and progression of many diseases. Systematic analysis of GTP-binding proteins would facilitate studies of related signaling pathways and drugs. Previously reported acyl-phosphate GTP-affinity probes, which react with and label lysine residues near GTP-binding pockets, have proven efficient in identifying labeling sites but suffer from poor stability due to their high reactivity. We report here new GTP-photoaffinity probes that employ a UV-triggered photoreactive group for covalent labeling of proteins, greatly improving probe stability. The inclusion of a terminal alkyne group allows labeled proteins to be tagged either with a fluorophore for fluorescence analysis or with a biotin group to enrich for LC–mass spectrometry (MS)/MS analysis. We further designed a GTP-N probe featuring an acid-cleavable P–N bond. The P–N bond enabled the release of GTP from labeling sites upon incubation under acidic conditions after labeling and enrichment, which reduced protein-modification mass shift and facilitated MS-based modification-site identification. This new method demonstrates good potential for identifying new GTP-binding proteins and systematically analyzing GTP-binding sites. These novel GTP-photoaffinity probes could be further applied in studying related biochemical mechanisms and in evaluating GTPase inhibitors.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"61 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acid-Cleavable Guanosine Triphosphate-Photoaffinity Probe for Global Profiling of Guanosine Triphosphate-Binding Proteins and Their Active Sites\",\"authors\":\"Can Gao, Mengxuan Li, Jing Tan, Zhiming Wang, Jing Xu, Wenwen Li, Feng Shi, Zhenzhen Chen, Rong Cai\",\"doi\":\"10.1021/acs.analchem.4c04827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guanosine triphosphate (GTP)-binding proteins function as molecular switches in cell signaling, playing critical roles in various biological pathways. Their dysregulation is associated with the causes and progression of many diseases. Systematic analysis of GTP-binding proteins would facilitate studies of related signaling pathways and drugs. Previously reported acyl-phosphate GTP-affinity probes, which react with and label lysine residues near GTP-binding pockets, have proven efficient in identifying labeling sites but suffer from poor stability due to their high reactivity. We report here new GTP-photoaffinity probes that employ a UV-triggered photoreactive group for covalent labeling of proteins, greatly improving probe stability. The inclusion of a terminal alkyne group allows labeled proteins to be tagged either with a fluorophore for fluorescence analysis or with a biotin group to enrich for LC–mass spectrometry (MS)/MS analysis. We further designed a GTP-N probe featuring an acid-cleavable P–N bond. The P–N bond enabled the release of GTP from labeling sites upon incubation under acidic conditions after labeling and enrichment, which reduced protein-modification mass shift and facilitated MS-based modification-site identification. This new method demonstrates good potential for identifying new GTP-binding proteins and systematically analyzing GTP-binding sites. These novel GTP-photoaffinity probes could be further applied in studying related biochemical mechanisms and in evaluating GTPase inhibitors.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04827\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Acid-Cleavable Guanosine Triphosphate-Photoaffinity Probe for Global Profiling of Guanosine Triphosphate-Binding Proteins and Their Active Sites
Guanosine triphosphate (GTP)-binding proteins function as molecular switches in cell signaling, playing critical roles in various biological pathways. Their dysregulation is associated with the causes and progression of many diseases. Systematic analysis of GTP-binding proteins would facilitate studies of related signaling pathways and drugs. Previously reported acyl-phosphate GTP-affinity probes, which react with and label lysine residues near GTP-binding pockets, have proven efficient in identifying labeling sites but suffer from poor stability due to their high reactivity. We report here new GTP-photoaffinity probes that employ a UV-triggered photoreactive group for covalent labeling of proteins, greatly improving probe stability. The inclusion of a terminal alkyne group allows labeled proteins to be tagged either with a fluorophore for fluorescence analysis or with a biotin group to enrich for LC–mass spectrometry (MS)/MS analysis. We further designed a GTP-N probe featuring an acid-cleavable P–N bond. The P–N bond enabled the release of GTP from labeling sites upon incubation under acidic conditions after labeling and enrichment, which reduced protein-modification mass shift and facilitated MS-based modification-site identification. This new method demonstrates good potential for identifying new GTP-binding proteins and systematically analyzing GTP-binding sites. These novel GTP-photoaffinity probes could be further applied in studying related biochemical mechanisms and in evaluating GTPase inhibitors.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.