芳胆碱通过核因子κ B信号通路缓解骨关节炎的进展。

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Wei He , Xinhuo Li , Qiannan Ding , Tan Zhang , Jiewen Zheng , Xuanyuan Lu , Jianlei Li , Cong Jin , Yangjun Xu
{"title":"芳胆碱通过核因子κ B信号通路缓解骨关节炎的进展。","authors":"Wei He ,&nbsp;Xinhuo Li ,&nbsp;Qiannan Ding ,&nbsp;Tan Zhang ,&nbsp;Jiewen Zheng ,&nbsp;Xuanyuan Lu ,&nbsp;Jianlei Li ,&nbsp;Cong Jin ,&nbsp;Yangjun Xu","doi":"10.1016/j.taap.2025.117241","DOIUrl":null,"url":null,"abstract":"<div><div>Osteoarthritis is a progressive, chronic joint disease characterized by pain, stiffness, and limited mobility, which can lead to physical disability in severe cases. Owing to its complex pathological features, effective treatments for osteoarthritis are lacking. Fangchinoline is a natural alkaloid found in the tuberous roots of plants belonging to the Menispermaceae family. Fangchinoline reportedly possesses anti-inflammatory, antioxidant, and anticancer properties; however, its role in osteoarthritis progression remains unclear. In this study, we investigated the protective effects and potential mechanisms of fangchinoline against osteoarthritis. In vitro, we confirmed that fangchinoline alleviates interleukin-1β-induced cartilage inflammation, reduces the levels of metabolic factors, such as inducible nitric oxide synthase and matrix metalloproteinase-3, and modulates the expression of aggrecan, which enhances extracellular matrix synthesis. In vivo, we demonstrated that fangchinoline can ameliorate articular cartilage degeneration and reduce inflammatory destruction in a destabilization of the medial meniscus mouse model. The nuclear factor kappa B (NF-κB) signaling pathway in osteoarthritis has been a primary target for drug development, and our results suggest that fangchinoline exerts anti-inflammatory effects by inhibiting the activity of IKKα/β. Using an in vitro human cartilage culture model, we further validated that fangchinoline significantly mitigates cartilage degeneration and inflammation by modulating the NF-κB signaling pathway. This evidence highlights its dual action in preserving cartilage integrity and suppressing inflammatory responses. These findings collectively underscore fangchinoline as a potent inhibitor of NF-κB, capable of attenuating key pathological processes associated with osteoarthritis. Therefore, fangchinoline emerges as a promising therapeutic candidate for slowing the progression of osteoarthritis.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"496 ","pages":"Article 117241"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fangchinoline alleviates the progression of osteoarthritis through the nuclear factor kappa B signaling pathway\",\"authors\":\"Wei He ,&nbsp;Xinhuo Li ,&nbsp;Qiannan Ding ,&nbsp;Tan Zhang ,&nbsp;Jiewen Zheng ,&nbsp;Xuanyuan Lu ,&nbsp;Jianlei Li ,&nbsp;Cong Jin ,&nbsp;Yangjun Xu\",\"doi\":\"10.1016/j.taap.2025.117241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Osteoarthritis is a progressive, chronic joint disease characterized by pain, stiffness, and limited mobility, which can lead to physical disability in severe cases. Owing to its complex pathological features, effective treatments for osteoarthritis are lacking. Fangchinoline is a natural alkaloid found in the tuberous roots of plants belonging to the Menispermaceae family. Fangchinoline reportedly possesses anti-inflammatory, antioxidant, and anticancer properties; however, its role in osteoarthritis progression remains unclear. In this study, we investigated the protective effects and potential mechanisms of fangchinoline against osteoarthritis. In vitro, we confirmed that fangchinoline alleviates interleukin-1β-induced cartilage inflammation, reduces the levels of metabolic factors, such as inducible nitric oxide synthase and matrix metalloproteinase-3, and modulates the expression of aggrecan, which enhances extracellular matrix synthesis. In vivo, we demonstrated that fangchinoline can ameliorate articular cartilage degeneration and reduce inflammatory destruction in a destabilization of the medial meniscus mouse model. The nuclear factor kappa B (NF-κB) signaling pathway in osteoarthritis has been a primary target for drug development, and our results suggest that fangchinoline exerts anti-inflammatory effects by inhibiting the activity of IKKα/β. Using an in vitro human cartilage culture model, we further validated that fangchinoline significantly mitigates cartilage degeneration and inflammation by modulating the NF-κB signaling pathway. This evidence highlights its dual action in preserving cartilage integrity and suppressing inflammatory responses. These findings collectively underscore fangchinoline as a potent inhibitor of NF-κB, capable of attenuating key pathological processes associated with osteoarthritis. Therefore, fangchinoline emerges as a promising therapeutic candidate for slowing the progression of osteoarthritis.</div></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":\"496 \",\"pages\":\"Article 117241\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X25000171\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000171","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

骨关节炎是一种进行性慢性关节疾病,其特征是疼痛、僵硬和活动受限,严重时可导致身体残疾。由于其复杂的病理特征,缺乏有效的治疗骨关节炎。防毒胆碱是一种天然生物碱,存在于植物的块茎根中,属于menisperaceae科。据报道,芳胆碱具有抗炎、抗氧化和抗癌的特性;然而,其在骨关节炎进展中的作用尚不清楚。在本研究中,我们探讨了芳胆碱对骨关节炎的保护作用及其可能的机制。在体外实验中,我们证实了fangchinoline可以减轻白细胞介素-1β-诱导的软骨炎症,降低代谢因子,如诱导型一氧化氮合酶和基质金属蛋白酶-3的水平,并调节聚集蛋白的表达,从而促进细胞外基质的合成。在体内实验中,我们在小鼠内侧半月板失稳模型中证明了方胆碱可以改善关节软骨退变并减少炎症破坏。骨关节炎的核因子κB (NF-κB)信号通路一直是药物开发的主要靶点,我们的研究结果表明,fangchinoline通过抑制IKKα/β的活性来发挥抗炎作用。通过体外人软骨培养模型,我们进一步验证了fangchinoline通过调节NF-κB信号通路显著减轻软骨退变和炎症。这一证据强调了其在保护软骨完整性和抑制炎症反应方面的双重作用。这些发现共同强调了fangchinoline作为NF-κB的有效抑制剂,能够减弱与骨关节炎相关的关键病理过程。因此,芳胆碱成为减缓骨关节炎进展的有希望的治疗候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fangchinoline alleviates the progression of osteoarthritis through the nuclear factor kappa B signaling pathway

Fangchinoline alleviates the progression of osteoarthritis through the nuclear factor kappa B signaling pathway
Osteoarthritis is a progressive, chronic joint disease characterized by pain, stiffness, and limited mobility, which can lead to physical disability in severe cases. Owing to its complex pathological features, effective treatments for osteoarthritis are lacking. Fangchinoline is a natural alkaloid found in the tuberous roots of plants belonging to the Menispermaceae family. Fangchinoline reportedly possesses anti-inflammatory, antioxidant, and anticancer properties; however, its role in osteoarthritis progression remains unclear. In this study, we investigated the protective effects and potential mechanisms of fangchinoline against osteoarthritis. In vitro, we confirmed that fangchinoline alleviates interleukin-1β-induced cartilage inflammation, reduces the levels of metabolic factors, such as inducible nitric oxide synthase and matrix metalloproteinase-3, and modulates the expression of aggrecan, which enhances extracellular matrix synthesis. In vivo, we demonstrated that fangchinoline can ameliorate articular cartilage degeneration and reduce inflammatory destruction in a destabilization of the medial meniscus mouse model. The nuclear factor kappa B (NF-κB) signaling pathway in osteoarthritis has been a primary target for drug development, and our results suggest that fangchinoline exerts anti-inflammatory effects by inhibiting the activity of IKKα/β. Using an in vitro human cartilage culture model, we further validated that fangchinoline significantly mitigates cartilage degeneration and inflammation by modulating the NF-κB signaling pathway. This evidence highlights its dual action in preserving cartilage integrity and suppressing inflammatory responses. These findings collectively underscore fangchinoline as a potent inhibitor of NF-κB, capable of attenuating key pathological processes associated with osteoarthritis. Therefore, fangchinoline emerges as a promising therapeutic candidate for slowing the progression of osteoarthritis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信