Kehao Zhang, Tao Wu, Linlin Shen, Qiang Wu, Weidong Chen, Chenwen Ye, Xingdao He
{"title":"基于离轴集成腔吸收光谱的二氧化碳传感与多层感知器模型","authors":"Kehao Zhang, Tao Wu, Linlin Shen, Qiang Wu, Weidong Chen, Chenwen Ye, Xingdao He","doi":"10.1021/acs.analchem.4c06057","DOIUrl":null,"url":null,"abstract":"Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately. We propose a carbon dioxide (CO<sub>2</sub>) sensor operating in the near-infrared spectral region (1.602 μm) based on OA-ICOS and deep learning models. A radiofrequency (RF) noise source is employed to reduce the cavity-mode noise in OA-ICOS and thus improve the signal-to-noise ratio (SNR). A time-series-based neural network, known as the informer, is employed for filtering CO<sub>2</sub> spectral time series. After filtering, spectral features are directly extracted from the filtered spectral data and CO<sub>2</sub> concentrations are predicted using a multilayer perceptron (MLP) model. Our results showed that the SNR attained using informer filtering approximately double those obtained using traditional filtering methods (Savitzky-Golay filtering, Kalman filtering, and wavelet threshold). The linear correlation coefficient (<i>R</i><sup>2</sup>) between measured concentrations and standard concentrations was increased from 79.74% (obtained by using the absorption-peak-fitting method) to 98.52% (obtained by using the proposed MLP model). Moreover, the detection limit of the CO<sub>2</sub> sensor using the MLP model reached 1.38 ppm at 224.4 s, a 3.79-fold improvement compared to that obtained by using the absorption-peak-fitting method. Our results demonstrate the feasibility of integrating deep learning methods in the field of spectroscopy-based sensing and provide a promising approach for spectral data processing.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"79 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Dioxide Sensing Based on Off-Axis Integrated Cavity Absorption Spectroscopy Combined with the Informer and Multilayer Perceptron Models\",\"authors\":\"Kehao Zhang, Tao Wu, Linlin Shen, Qiang Wu, Weidong Chen, Chenwen Ye, Xingdao He\",\"doi\":\"10.1021/acs.analchem.4c06057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately. We propose a carbon dioxide (CO<sub>2</sub>) sensor operating in the near-infrared spectral region (1.602 μm) based on OA-ICOS and deep learning models. A radiofrequency (RF) noise source is employed to reduce the cavity-mode noise in OA-ICOS and thus improve the signal-to-noise ratio (SNR). A time-series-based neural network, known as the informer, is employed for filtering CO<sub>2</sub> spectral time series. After filtering, spectral features are directly extracted from the filtered spectral data and CO<sub>2</sub> concentrations are predicted using a multilayer perceptron (MLP) model. Our results showed that the SNR attained using informer filtering approximately double those obtained using traditional filtering methods (Savitzky-Golay filtering, Kalman filtering, and wavelet threshold). The linear correlation coefficient (<i>R</i><sup>2</sup>) between measured concentrations and standard concentrations was increased from 79.74% (obtained by using the absorption-peak-fitting method) to 98.52% (obtained by using the proposed MLP model). Moreover, the detection limit of the CO<sub>2</sub> sensor using the MLP model reached 1.38 ppm at 224.4 s, a 3.79-fold improvement compared to that obtained by using the absorption-peak-fitting method. Our results demonstrate the feasibility of integrating deep learning methods in the field of spectroscopy-based sensing and provide a promising approach for spectral data processing.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06057\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06057","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Carbon Dioxide Sensing Based on Off-Axis Integrated Cavity Absorption Spectroscopy Combined with the Informer and Multilayer Perceptron Models
Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately. We propose a carbon dioxide (CO2) sensor operating in the near-infrared spectral region (1.602 μm) based on OA-ICOS and deep learning models. A radiofrequency (RF) noise source is employed to reduce the cavity-mode noise in OA-ICOS and thus improve the signal-to-noise ratio (SNR). A time-series-based neural network, known as the informer, is employed for filtering CO2 spectral time series. After filtering, spectral features are directly extracted from the filtered spectral data and CO2 concentrations are predicted using a multilayer perceptron (MLP) model. Our results showed that the SNR attained using informer filtering approximately double those obtained using traditional filtering methods (Savitzky-Golay filtering, Kalman filtering, and wavelet threshold). The linear correlation coefficient (R2) between measured concentrations and standard concentrations was increased from 79.74% (obtained by using the absorption-peak-fitting method) to 98.52% (obtained by using the proposed MLP model). Moreover, the detection limit of the CO2 sensor using the MLP model reached 1.38 ppm at 224.4 s, a 3.79-fold improvement compared to that obtained by using the absorption-peak-fitting method. Our results demonstrate the feasibility of integrating deep learning methods in the field of spectroscopy-based sensing and provide a promising approach for spectral data processing.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.