揭示黑兵蝇幼虫作为多种水产养殖系统中尼罗罗非鱼生产的可持续蛋白质来源的潜力。

IF 3 2区 农林科学 Q1 FISHERIES
Jonathan Munguti, Mavindu Muthoka, Jimmy B. Mboya, Domitila Kyule, Menaga Meenakshisundaram, Chrysantus M. Tanga
{"title":"揭示黑兵蝇幼虫作为多种水产养殖系统中尼罗罗非鱼生产的可持续蛋白质来源的潜力。","authors":"Jonathan Munguti,&nbsp;Mavindu Muthoka,&nbsp;Jimmy B. Mboya,&nbsp;Domitila Kyule,&nbsp;Menaga Meenakshisundaram,&nbsp;Chrysantus M. Tanga","doi":"10.1155/anu/3598843","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Aquaculture plays a critical role in global food security, with Nile tilapia (<i>Oreochromis niloticus</i>) recognized for its adaptability and robust growth. However, traditional feeds, heavily reliant on fishmeal (FM) and soybean meal, face economic and environmental challenges. In response, black soldier fly larvae meal (BSFLM) has emerged as a promising, nutrient-dense alternative. This review synthesizes existing literature on BSFLM’s nutritional profile and its suitability for Nile tilapia diets, while acknowledging that the data come from diverse independent studies conducted under varying environmental conditions and husbandry practices. BSFLM consistently provides high-quality protein (29.9%–48.2%), aligning with tilapia’s requirements, and is rich in essential minerals and fatty acids. While its lipid content (25.69%–28.43%) may require processing adjustments, the overall profile supports tilapia health and growth. Trends from case studies suggest that certain systems, such as hapas placed in ponds, have reported favorable growth and feed conversion efficiencies at 50% FM replacement levels. However, these findings cannot be directly compared across all studies due to differences in methodologies, culture conditions, and inclusion rates. Instead, they collectively indicate that BSFLM can effectively replace traditional protein sources and enhance sustainability. As research and production scale up, careful consideration of context, system design, and feed formulations will be essential. Collaborative efforts among researchers, industry, and policymakers will further refine the use of BSFLM, ultimately advancing the environmental and economic sustainability of Nile tilapia aquaculture.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759566/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Potential of Black Soldier Fly Larvae as a Sustainable Protein Source for Nile Tilapia Production in Diverse Aquaculture Systems\",\"authors\":\"Jonathan Munguti,&nbsp;Mavindu Muthoka,&nbsp;Jimmy B. Mboya,&nbsp;Domitila Kyule,&nbsp;Menaga Meenakshisundaram,&nbsp;Chrysantus M. Tanga\",\"doi\":\"10.1155/anu/3598843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Aquaculture plays a critical role in global food security, with Nile tilapia (<i>Oreochromis niloticus</i>) recognized for its adaptability and robust growth. However, traditional feeds, heavily reliant on fishmeal (FM) and soybean meal, face economic and environmental challenges. In response, black soldier fly larvae meal (BSFLM) has emerged as a promising, nutrient-dense alternative. This review synthesizes existing literature on BSFLM’s nutritional profile and its suitability for Nile tilapia diets, while acknowledging that the data come from diverse independent studies conducted under varying environmental conditions and husbandry practices. BSFLM consistently provides high-quality protein (29.9%–48.2%), aligning with tilapia’s requirements, and is rich in essential minerals and fatty acids. While its lipid content (25.69%–28.43%) may require processing adjustments, the overall profile supports tilapia health and growth. Trends from case studies suggest that certain systems, such as hapas placed in ponds, have reported favorable growth and feed conversion efficiencies at 50% FM replacement levels. However, these findings cannot be directly compared across all studies due to differences in methodologies, culture conditions, and inclusion rates. Instead, they collectively indicate that BSFLM can effectively replace traditional protein sources and enhance sustainability. As research and production scale up, careful consideration of context, system design, and feed formulations will be essential. Collaborative efforts among researchers, industry, and policymakers will further refine the use of BSFLM, ultimately advancing the environmental and economic sustainability of Nile tilapia aquaculture.</p>\\n </div>\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759566/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/anu/3598843\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/3598843","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

水产养殖在全球粮食安全中发挥着关键作用,尼罗罗非鱼(Oreochromis niloticus)因其适应性和强劲的增长而得到认可。然而,严重依赖鱼粉和豆粕的传统饲料面临着经济和环境的挑战。因此,黑兵蝇幼虫膳食(BSFLM)作为一种有前途的、营养丰富的替代品出现了。本综述综合了关于BSFLM的营养概况及其对尼罗罗非鱼饲料的适用性的现有文献,同时承认这些数据来自不同环境条件和饲养实践下进行的各种独立研究。BSFLM持续提供高品质蛋白质(29.9%-48.2%),符合罗非鱼的需求,并富含必需矿物质和脂肪酸。虽然其脂质含量(25.69%-28.43%)可能需要加工调整,但总体状况支持罗非鱼的健康和生长。案例研究的趋势表明,某些系统,如池塘中的hapas,在50%的FM替代水平下具有良好的生长和饲料转换效率。然而,由于方法、培养条件和纳入率的差异,这些发现不能直接在所有研究中进行比较。相反,它们共同表明BSFLM可以有效地取代传统的蛋白质来源并增强可持续性。随着研究和生产规模的扩大,仔细考虑环境、系统设计和饲料配方将是至关重要的。研究人员、行业和政策制定者之间的合作将进一步完善BSFLM的使用,最终促进尼罗罗非鱼水产养殖的环境和经济可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the Potential of Black Soldier Fly Larvae as a Sustainable Protein Source for Nile Tilapia Production in Diverse Aquaculture Systems

Unraveling the Potential of Black Soldier Fly Larvae as a Sustainable Protein Source for Nile Tilapia Production in Diverse Aquaculture Systems

Aquaculture plays a critical role in global food security, with Nile tilapia (Oreochromis niloticus) recognized for its adaptability and robust growth. However, traditional feeds, heavily reliant on fishmeal (FM) and soybean meal, face economic and environmental challenges. In response, black soldier fly larvae meal (BSFLM) has emerged as a promising, nutrient-dense alternative. This review synthesizes existing literature on BSFLM’s nutritional profile and its suitability for Nile tilapia diets, while acknowledging that the data come from diverse independent studies conducted under varying environmental conditions and husbandry practices. BSFLM consistently provides high-quality protein (29.9%–48.2%), aligning with tilapia’s requirements, and is rich in essential minerals and fatty acids. While its lipid content (25.69%–28.43%) may require processing adjustments, the overall profile supports tilapia health and growth. Trends from case studies suggest that certain systems, such as hapas placed in ponds, have reported favorable growth and feed conversion efficiencies at 50% FM replacement levels. However, these findings cannot be directly compared across all studies due to differences in methodologies, culture conditions, and inclusion rates. Instead, they collectively indicate that BSFLM can effectively replace traditional protein sources and enhance sustainability. As research and production scale up, careful consideration of context, system design, and feed formulations will be essential. Collaborative efforts among researchers, industry, and policymakers will further refine the use of BSFLM, ultimately advancing the environmental and economic sustainability of Nile tilapia aquaculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信