Alexander Zhbanov, Ye Sung Lee, Minkook Son, Byung Jun Kim, Sung Yang
{"title":"基于微流控阻抗光谱技术的血液分析改进:流动血液的红细胞定向和各向异性介电特性","authors":"Alexander Zhbanov, Ye Sung Lee, Minkook Son, Byung Jun Kim, Sung Yang","doi":"10.1021/acs.analchem.4c03975","DOIUrl":null,"url":null,"abstract":"Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz. Two major factors make accurate analysis of impedance spectra difficult: forced orientation of erythrocytes in a microchannel and hemoglobin hydration. A theoretical approach based on the effective medium theory was applied to find the preferred erythrocyte orientation and dielectric properties of blood components. The cytoplasm of erythrocytes was considered a colloidal suspension of hemoglobin molecules surrounded by a double hydration shell. The proposed preferred orientation factor demonstrates that approximately 66% of the erythrocytes in the microfluidic channel have a random distribution and approximately 34% of them occupy random positions and are oriented along the blood flow. The experiments did not reveal any significant changes in the preferred orientation factor when the blood flow rate changed from 2 to 20 mL/h. Finally, several hematological parameters of blood samples were determined (erythrocyte count, hemoglobin level, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration). A comparison of routine hematological studies and the developed technique proves its effectiveness.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Hematology Analysis Based on Microfluidic Impedance Spectroscopy: Erythrocyte Orientation and Anisotropic Dielectric Properties of Flowing Blood\",\"authors\":\"Alexander Zhbanov, Ye Sung Lee, Minkook Son, Byung Jun Kim, Sung Yang\",\"doi\":\"10.1021/acs.analchem.4c03975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz. Two major factors make accurate analysis of impedance spectra difficult: forced orientation of erythrocytes in a microchannel and hemoglobin hydration. A theoretical approach based on the effective medium theory was applied to find the preferred erythrocyte orientation and dielectric properties of blood components. The cytoplasm of erythrocytes was considered a colloidal suspension of hemoglobin molecules surrounded by a double hydration shell. The proposed preferred orientation factor demonstrates that approximately 66% of the erythrocytes in the microfluidic channel have a random distribution and approximately 34% of them occupy random positions and are oriented along the blood flow. The experiments did not reveal any significant changes in the preferred orientation factor when the blood flow rate changed from 2 to 20 mL/h. Finally, several hematological parameters of blood samples were determined (erythrocyte count, hemoglobin level, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration). A comparison of routine hematological studies and the developed technique proves its effectiveness.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c03975\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03975","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Improved Hematology Analysis Based on Microfluidic Impedance Spectroscopy: Erythrocyte Orientation and Anisotropic Dielectric Properties of Flowing Blood
Electrochemical impedance spectroscopy has great potential for laboratory blood tests. The overall aim of this study is to develop a microfluidic sensor for determining the physical properties and hematological parameters of blood based on its dielectric spectra. Impedance was measured in flowing blood to prevent aggregation and sedimentation at frequencies between 40 Hz and 110 MHz. Two major factors make accurate analysis of impedance spectra difficult: forced orientation of erythrocytes in a microchannel and hemoglobin hydration. A theoretical approach based on the effective medium theory was applied to find the preferred erythrocyte orientation and dielectric properties of blood components. The cytoplasm of erythrocytes was considered a colloidal suspension of hemoglobin molecules surrounded by a double hydration shell. The proposed preferred orientation factor demonstrates that approximately 66% of the erythrocytes in the microfluidic channel have a random distribution and approximately 34% of them occupy random positions and are oriented along the blood flow. The experiments did not reveal any significant changes in the preferred orientation factor when the blood flow rate changed from 2 to 20 mL/h. Finally, several hematological parameters of blood samples were determined (erythrocyte count, hemoglobin level, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration). A comparison of routine hematological studies and the developed technique proves its effectiveness.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.