基于稀疏贝叶斯回归和协同神经动力学优化的索引跟踪

IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Fangyu Zhang;Jun Wang
{"title":"基于稀疏贝叶斯回归和协同神经动力学优化的索引跟踪","authors":"Fangyu Zhang;Jun Wang","doi":"10.1109/TCYB.2024.3525413","DOIUrl":null,"url":null,"abstract":"Index tracking is a primary passive investment strategy. Many existing methods, such as cardinality-constrained and regularized regressions, need to prespecify parameters to generate sparse portfolios to track indices, which complicates the tracking procedure and may compromise tracking performance. This article addresses index tracking and enhanced index tracking via Bayesian learning and collaborative neurodynamic optimization. Specifically, we formulate a sparse Bayesian regression problem for index tracking. Furthermore, we reformulate the problem for enhanced index tracking by adding constraints based on a second-order stochastic domination rule. To overcome the nonconvexity of the objective function in the formulated problems, we propose a sparse Bayesian regression algorithm based on multiple recurrent neural networks in the collaborative neurodynamic optimization framework. We demonstrate the superiority of the proposed methods to mainstream baselines in terms of predictability, consistency, sparsity, and profitability via experimentation on the data from seven major stock markets.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 3","pages":"1238-1249"},"PeriodicalIF":10.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Index Tracking via Sparse Bayesian Regression and Collaborative Neurodynamic Optimization\",\"authors\":\"Fangyu Zhang;Jun Wang\",\"doi\":\"10.1109/TCYB.2024.3525413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Index tracking is a primary passive investment strategy. Many existing methods, such as cardinality-constrained and regularized regressions, need to prespecify parameters to generate sparse portfolios to track indices, which complicates the tracking procedure and may compromise tracking performance. This article addresses index tracking and enhanced index tracking via Bayesian learning and collaborative neurodynamic optimization. Specifically, we formulate a sparse Bayesian regression problem for index tracking. Furthermore, we reformulate the problem for enhanced index tracking by adding constraints based on a second-order stochastic domination rule. To overcome the nonconvexity of the objective function in the formulated problems, we propose a sparse Bayesian regression algorithm based on multiple recurrent neural networks in the collaborative neurodynamic optimization framework. We demonstrate the superiority of the proposed methods to mainstream baselines in terms of predictability, consistency, sparsity, and profitability via experimentation on the data from seven major stock markets.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 3\",\"pages\":\"1238-1249\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10852331/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10852331/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

指数跟踪是一种主要的被动投资策略。现有的许多方法,如基数约束回归和正则化回归,需要预先指定参数来生成稀疏组合来跟踪指标,这使得跟踪过程变得复杂,并且可能影响跟踪性能。本文介绍了通过贝叶斯学习和协作神经动力学优化的索引跟踪和增强索引跟踪。具体来说,我们制定了一个稀疏贝叶斯回归问题,用于索引跟踪。此外,我们通过添加基于二阶随机支配规则的约束来重新表述增强指数跟踪问题。为了克服公式化问题中目标函数的非凸性,在协同神经动力学优化框架下,提出了一种基于多递归神经网络的稀疏贝叶斯回归算法。我们通过对七个主要股票市场的数据进行实验,证明了所提出的方法在可预测性、一致性、稀疏性和盈利能力方面优于主流基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Index Tracking via Sparse Bayesian Regression and Collaborative Neurodynamic Optimization
Index tracking is a primary passive investment strategy. Many existing methods, such as cardinality-constrained and regularized regressions, need to prespecify parameters to generate sparse portfolios to track indices, which complicates the tracking procedure and may compromise tracking performance. This article addresses index tracking and enhanced index tracking via Bayesian learning and collaborative neurodynamic optimization. Specifically, we formulate a sparse Bayesian regression problem for index tracking. Furthermore, we reformulate the problem for enhanced index tracking by adding constraints based on a second-order stochastic domination rule. To overcome the nonconvexity of the objective function in the formulated problems, we propose a sparse Bayesian regression algorithm based on multiple recurrent neural networks in the collaborative neurodynamic optimization framework. We demonstrate the superiority of the proposed methods to mainstream baselines in terms of predictability, consistency, sparsity, and profitability via experimentation on the data from seven major stock markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信