利用啮齿动物模型研究化疗诱导的昼夜节律紊乱的机制。

IF 15.1 1区 医学 Q1 NEUROSCIENCES
Trends in Neurosciences Pub Date : 2025-04-01 Epub Date: 2025-01-22 DOI:10.1016/j.tins.2024.12.011
Zoe M Tapp, Amiya K Ghosh, Karl H Obrietan, Leah M Pyter
{"title":"利用啮齿动物模型研究化疗诱导的昼夜节律紊乱的机制。","authors":"Zoe M Tapp, Amiya K Ghosh, Karl H Obrietan, Leah M Pyter","doi":"10.1016/j.tins.2024.12.011","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy treatment can significantly increase the survival of patients with cancer, but it also causes collateral damage in the body that can lead to treatment dose reductions and can reduce patient quality of life. One understudied side effect of chemotherapy is circadian disruption, which is associated with lasting biological and behavioral toxicities. Mechanisms of how chemotherapy alters circadian rhythms remain largely unknown, although leveraging rodent models may provide insights into causes and consequences of this disruption. Here, we review physiological, molecular, and behavioral evidence of central and peripheral circadian disruption in various rodent models of chemotherapy and discuss possible mechanisms driving these circadian disruptions. Overall, restoring circadian rhythms following treatment-induced disruptions may be a novel target by which to improve the health and quality of life of survivors.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"283-296"},"PeriodicalIF":15.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into chemotherapy-induced circadian disruption using rodent models.\",\"authors\":\"Zoe M Tapp, Amiya K Ghosh, Karl H Obrietan, Leah M Pyter\",\"doi\":\"10.1016/j.tins.2024.12.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotherapy treatment can significantly increase the survival of patients with cancer, but it also causes collateral damage in the body that can lead to treatment dose reductions and can reduce patient quality of life. One understudied side effect of chemotherapy is circadian disruption, which is associated with lasting biological and behavioral toxicities. Mechanisms of how chemotherapy alters circadian rhythms remain largely unknown, although leveraging rodent models may provide insights into causes and consequences of this disruption. Here, we review physiological, molecular, and behavioral evidence of central and peripheral circadian disruption in various rodent models of chemotherapy and discuss possible mechanisms driving these circadian disruptions. Overall, restoring circadian rhythms following treatment-induced disruptions may be a novel target by which to improve the health and quality of life of survivors.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":\" \",\"pages\":\"283-296\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2024.12.011\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.12.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

化疗可以显著提高癌症患者的生存率,但它也会对身体造成附带损害,导致治疗剂量减少,降低患者的生活质量。化疗的一个未被充分研究的副作用是昼夜节律紊乱,这与持久的生物和行为毒性有关。化疗如何改变昼夜节律的机制在很大程度上仍然未知,尽管利用啮齿动物模型可能提供对这种破坏的原因和后果的见解。在这里,我们回顾了在各种化疗啮齿动物模型中中枢和外周昼夜节律破坏的生理、分子和行为证据,并讨论了驱动这些昼夜节律破坏的可能机制。总的来说,在治疗引起的昼夜节律中断后恢复昼夜节律可能是改善幸存者健康和生活质量的新目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic insights into chemotherapy-induced circadian disruption using rodent models.

Chemotherapy treatment can significantly increase the survival of patients with cancer, but it also causes collateral damage in the body that can lead to treatment dose reductions and can reduce patient quality of life. One understudied side effect of chemotherapy is circadian disruption, which is associated with lasting biological and behavioral toxicities. Mechanisms of how chemotherapy alters circadian rhythms remain largely unknown, although leveraging rodent models may provide insights into causes and consequences of this disruption. Here, we review physiological, molecular, and behavioral evidence of central and peripheral circadian disruption in various rodent models of chemotherapy and discuss possible mechanisms driving these circadian disruptions. Overall, restoring circadian rhythms following treatment-induced disruptions may be a novel target by which to improve the health and quality of life of survivors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信