{"title":"纳米孔中β-发夹肽的复杂和非顺序电流特征","authors":"Misa Yamaji, Mauro Chinappi, Blasco Morozzo della Rocca, Kenji Usui, Ryuji Kawano","doi":"10.1021/acs.analchem.4c04150","DOIUrl":null,"url":null,"abstract":"Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore. Our experiments revealed that SV28 is captured via dielectrophoresis and exhibits long dwell times within the nanopore, leading to multiple current blockade levels. Unlike DNA hairpins, the peptide showed non-sequential transitions among four distinct blockade levels. This complex behavior indicates that the peptide dynamics in nanopores cannot be simply modeled along a single reaction coordinate. Our findings provide insights into peptide-nanopore interactions, which are potentially useful for developing nanopore-based peptide identification technologies.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"33 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex and Non-sequential Current Signatures of a β-Hairpin Peptide Confined in a Nanopore\",\"authors\":\"Misa Yamaji, Mauro Chinappi, Blasco Morozzo della Rocca, Kenji Usui, Ryuji Kawano\",\"doi\":\"10.1021/acs.analchem.4c04150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore. Our experiments revealed that SV28 is captured via dielectrophoresis and exhibits long dwell times within the nanopore, leading to multiple current blockade levels. Unlike DNA hairpins, the peptide showed non-sequential transitions among four distinct blockade levels. This complex behavior indicates that the peptide dynamics in nanopores cannot be simply modeled along a single reaction coordinate. Our findings provide insights into peptide-nanopore interactions, which are potentially useful for developing nanopore-based peptide identification technologies.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04150\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Complex and Non-sequential Current Signatures of a β-Hairpin Peptide Confined in a Nanopore
Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore. Our experiments revealed that SV28 is captured via dielectrophoresis and exhibits long dwell times within the nanopore, leading to multiple current blockade levels. Unlike DNA hairpins, the peptide showed non-sequential transitions among four distinct blockade levels. This complex behavior indicates that the peptide dynamics in nanopores cannot be simply modeled along a single reaction coordinate. Our findings provide insights into peptide-nanopore interactions, which are potentially useful for developing nanopore-based peptide identification technologies.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.