{"title":"π共轭桥增强α-甲基色胺特异性检测的精确吸电子强度调节","authors":"Zhenzhen Cai, Zhiheng Huo, Gaosheng Li, Xu Cheng, Fang Xiao, Yuwan Du, Baiyi Zu, Xincun Dou","doi":"10.1021/acs.analchem.4c05950","DOIUrl":null,"url":null,"abstract":"The specific fluorescent detection of α-methyltryptamine (AMT) presents a great challenge because similar amine groups and benzene rings exist in a variety of amines. Here, we show the precise modulation of the electron-withdrawing strength of the π-conjugate bridge in aldehyde-containing Schiff base-based fluorescent probes for ultratrace AMT discrimination. It is found that different electron-withdrawing groups −C<sub>6</sub>H<sub>4</sub>, −C<sub>6</sub>H<sub>2</sub>N<sub>2</sub>, and −C<sub>6</sub>H<sub>2</sub>Br<sub>2</sub> as the π-conjugate bridge of the 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF)-based probes can classify and identify organic amines with different amine nucleophilicities. Notably, the probe with −C<sub>6</sub>H<sub>2</sub>Br<sub>2</sub> as the π-conjugate bridge, denoted as BrFS–TCF, which has the highest electrophilicity of the recognition site, shows a superior nM-level limit of detection (LOD) and an instant response time (<0.1 s) toward AMT. Especially, it shows an excellent selectivity facing the secondary amines, tertiary amines, aromatic amines, and even primary amines. The present strategy would provide a new pathway for chemical substances with similar structures and properties and especially for fighting against illegal drugs.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"14 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Electron-Withdrawing Strength Regulation of π-Conjugate Bridge-Boosted Specific Detection toward α-Methyltryptamine\",\"authors\":\"Zhenzhen Cai, Zhiheng Huo, Gaosheng Li, Xu Cheng, Fang Xiao, Yuwan Du, Baiyi Zu, Xincun Dou\",\"doi\":\"10.1021/acs.analchem.4c05950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The specific fluorescent detection of α-methyltryptamine (AMT) presents a great challenge because similar amine groups and benzene rings exist in a variety of amines. Here, we show the precise modulation of the electron-withdrawing strength of the π-conjugate bridge in aldehyde-containing Schiff base-based fluorescent probes for ultratrace AMT discrimination. It is found that different electron-withdrawing groups −C<sub>6</sub>H<sub>4</sub>, −C<sub>6</sub>H<sub>2</sub>N<sub>2</sub>, and −C<sub>6</sub>H<sub>2</sub>Br<sub>2</sub> as the π-conjugate bridge of the 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF)-based probes can classify and identify organic amines with different amine nucleophilicities. Notably, the probe with −C<sub>6</sub>H<sub>2</sub>Br<sub>2</sub> as the π-conjugate bridge, denoted as BrFS–TCF, which has the highest electrophilicity of the recognition site, shows a superior nM-level limit of detection (LOD) and an instant response time (<0.1 s) toward AMT. Especially, it shows an excellent selectivity facing the secondary amines, tertiary amines, aromatic amines, and even primary amines. The present strategy would provide a new pathway for chemical substances with similar structures and properties and especially for fighting against illegal drugs.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05950\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05950","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Precise Electron-Withdrawing Strength Regulation of π-Conjugate Bridge-Boosted Specific Detection toward α-Methyltryptamine
The specific fluorescent detection of α-methyltryptamine (AMT) presents a great challenge because similar amine groups and benzene rings exist in a variety of amines. Here, we show the precise modulation of the electron-withdrawing strength of the π-conjugate bridge in aldehyde-containing Schiff base-based fluorescent probes for ultratrace AMT discrimination. It is found that different electron-withdrawing groups −C6H4, −C6H2N2, and −C6H2Br2 as the π-conjugate bridge of the 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF)-based probes can classify and identify organic amines with different amine nucleophilicities. Notably, the probe with −C6H2Br2 as the π-conjugate bridge, denoted as BrFS–TCF, which has the highest electrophilicity of the recognition site, shows a superior nM-level limit of detection (LOD) and an instant response time (<0.1 s) toward AMT. Especially, it shows an excellent selectivity facing the secondary amines, tertiary amines, aromatic amines, and even primary amines. The present strategy would provide a new pathway for chemical substances with similar structures and properties and especially for fighting against illegal drugs.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.