Sumeyye Akbulut, Elanur Dasdemir, Hakan Ozkan, Ahmet Adiguzel
{"title":"菲达干酪植物乳杆菌细菌素基因及抑菌活性测定。","authors":"Sumeyye Akbulut, Elanur Dasdemir, Hakan Ozkan, Ahmet Adiguzel","doi":"10.1093/femsle/fnaf002","DOIUrl":null,"url":null,"abstract":"<p><p>In this study designed to isolate lactic acid bacteria (LAB) with bacteriocin production potential, white cheese samples were collected from different provinces of Turkey and isolation was carried out. A series of experiments were carried out for the main purpose and the actual bacteriocin producers were identified by detecting the genes encoding this bacteriocin. The experiments carried out in this direction were initially carried out with 20 isolates and as a result of various experiments, the number of isolates was reduced to 8 and the study was continued with 8 isolates. In order to determine that the eight isolates identified as a result of a phenotypic and biochemical characterization study were true bacteriocin-producing strains, their antibacterial activity was investigated and then the presence of bacteriocin genes was examined by specific polymerase chain reaction (PCR) using gene-specific primers. As a result, MS16 coded Lactiplantibacillus plantarum OR922652 was found to have strong antibacterial activity against Escherichia coli, Klebsiella pneumonia, Yersinia enterocolitica, Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus; the isolate was susceptible to clinically important antibiotics (ciprofloxacin, gentamicin, penicillin G, ampicillin, chloramphenicol, and vancomycin) and resistant to erythromycin, had no hemolytic activity and possessed plnA and plnD genes encoding bacteriocin production. In conclusion, the MS16 coded L. plantarum isolate has emerged as a promising strain that can be used especially in the health field and in the food industry related to LAB.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of bacteriocin genes and antimicrobial activity of Lactiplantibacillus plantarum isolated from feta cheese samples.\",\"authors\":\"Sumeyye Akbulut, Elanur Dasdemir, Hakan Ozkan, Ahmet Adiguzel\",\"doi\":\"10.1093/femsle/fnaf002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study designed to isolate lactic acid bacteria (LAB) with bacteriocin production potential, white cheese samples were collected from different provinces of Turkey and isolation was carried out. A series of experiments were carried out for the main purpose and the actual bacteriocin producers were identified by detecting the genes encoding this bacteriocin. The experiments carried out in this direction were initially carried out with 20 isolates and as a result of various experiments, the number of isolates was reduced to 8 and the study was continued with 8 isolates. In order to determine that the eight isolates identified as a result of a phenotypic and biochemical characterization study were true bacteriocin-producing strains, their antibacterial activity was investigated and then the presence of bacteriocin genes was examined by specific polymerase chain reaction (PCR) using gene-specific primers. As a result, MS16 coded Lactiplantibacillus plantarum OR922652 was found to have strong antibacterial activity against Escherichia coli, Klebsiella pneumonia, Yersinia enterocolitica, Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus; the isolate was susceptible to clinically important antibiotics (ciprofloxacin, gentamicin, penicillin G, ampicillin, chloramphenicol, and vancomycin) and resistant to erythromycin, had no hemolytic activity and possessed plnA and plnD genes encoding bacteriocin production. In conclusion, the MS16 coded L. plantarum isolate has emerged as a promising strain that can be used especially in the health field and in the food industry related to LAB.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnaf002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Determination of bacteriocin genes and antimicrobial activity of Lactiplantibacillus plantarum isolated from feta cheese samples.
In this study designed to isolate lactic acid bacteria (LAB) with bacteriocin production potential, white cheese samples were collected from different provinces of Turkey and isolation was carried out. A series of experiments were carried out for the main purpose and the actual bacteriocin producers were identified by detecting the genes encoding this bacteriocin. The experiments carried out in this direction were initially carried out with 20 isolates and as a result of various experiments, the number of isolates was reduced to 8 and the study was continued with 8 isolates. In order to determine that the eight isolates identified as a result of a phenotypic and biochemical characterization study were true bacteriocin-producing strains, their antibacterial activity was investigated and then the presence of bacteriocin genes was examined by specific polymerase chain reaction (PCR) using gene-specific primers. As a result, MS16 coded Lactiplantibacillus plantarum OR922652 was found to have strong antibacterial activity against Escherichia coli, Klebsiella pneumonia, Yersinia enterocolitica, Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus; the isolate was susceptible to clinically important antibiotics (ciprofloxacin, gentamicin, penicillin G, ampicillin, chloramphenicol, and vancomycin) and resistant to erythromycin, had no hemolytic activity and possessed plnA and plnD genes encoding bacteriocin production. In conclusion, the MS16 coded L. plantarum isolate has emerged as a promising strain that can be used especially in the health field and in the food industry related to LAB.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.