短期胁迫及与食物剥夺相关的盐度和氨氮水平互作对尼罗罗非鱼脂肪酸分布和体组成的影响

IF 3 2区 农林科学 Q1 FISHERIES
Aquaculture Nutrition Pub Date : 2025-01-06 eCollection Date: 2025-01-01 DOI:10.1155/anu/8840365
Eisa Ebrahimi, Javad Motamedi-Tehrani, Rahim Peyghan
{"title":"短期胁迫及与食物剥夺相关的盐度和氨氮水平互作对尼罗罗非鱼脂肪酸分布和体组成的影响","authors":"Eisa Ebrahimi, Javad Motamedi-Tehrani, Rahim Peyghan","doi":"10.1155/anu/8840365","DOIUrl":null,"url":null,"abstract":"<p><p>High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds. The interaction of these elements can occur in breeding ponds, significantly impacting the physiology and quality of the aquatic products. The purpose of this study was to examine the relationship between salinity and ammonia-N stress and their effects on the quality and fatty acid profile of tilapia fish (<i>Oreochromis niloticus</i>). The fish were divided into 12 distinct treatment groups, each characterized by varying salinity levels (0, 4, 8, and 12 ppt) and different concentrations of ammonia-N (0, 50% of 50% lethal concentration [LC<sub>50</sub>]-96 h, and 30% of LC<sub>50</sub>-96 h) arranged in a factorial design. The calculated LC<sub>50</sub>-96 h for ammonia-N was 0.86 mg/L. Significant increases were observed in cortisol and glucose levels associated with various salinity treatments and ammonia levels. The levels of carcass protein in the salinity treatments (4, 8, and 12 ppt) did not show any significant differences when compared to the control treatment. However, the protein percentage at 50% of LC<sub>50</sub>-96 h of ammonia-N was lower than that of the control treatment. In salinity treatments and ammonia levels (50% and 30% of LC<sub>50</sub>-96 h of ammonia-N), a significant increase in the percentage of lipid, highly unsaturated fatty acids (HUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) was observed. To draw the conclusion, our assessment indicates that a salinity concentration of 8 ppt over a 96-h period without feeding has produced positive effects on the quality of tilapia carcasses.</p>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 ","pages":"8840365"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730019/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Short-Term Stress and Interaction of Salinity and Ammonia-N Levels, Associated With Food Deprivation on Fatty Acid Profile and Body Composition in Nile Tilapia (<i>Oreochromis niloticus</i>).\",\"authors\":\"Eisa Ebrahimi, Javad Motamedi-Tehrani, Rahim Peyghan\",\"doi\":\"10.1155/anu/8840365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds. The interaction of these elements can occur in breeding ponds, significantly impacting the physiology and quality of the aquatic products. The purpose of this study was to examine the relationship between salinity and ammonia-N stress and their effects on the quality and fatty acid profile of tilapia fish (<i>Oreochromis niloticus</i>). The fish were divided into 12 distinct treatment groups, each characterized by varying salinity levels (0, 4, 8, and 12 ppt) and different concentrations of ammonia-N (0, 50% of 50% lethal concentration [LC<sub>50</sub>]-96 h, and 30% of LC<sub>50</sub>-96 h) arranged in a factorial design. The calculated LC<sub>50</sub>-96 h for ammonia-N was 0.86 mg/L. Significant increases were observed in cortisol and glucose levels associated with various salinity treatments and ammonia levels. The levels of carcass protein in the salinity treatments (4, 8, and 12 ppt) did not show any significant differences when compared to the control treatment. However, the protein percentage at 50% of LC<sub>50</sub>-96 h of ammonia-N was lower than that of the control treatment. In salinity treatments and ammonia levels (50% and 30% of LC<sub>50</sub>-96 h of ammonia-N), a significant increase in the percentage of lipid, highly unsaturated fatty acids (HUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) was observed. To draw the conclusion, our assessment indicates that a salinity concentration of 8 ppt over a 96-h period without feeding has produced positive effects on the quality of tilapia carcasses.</p>\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":\"2025 \",\"pages\":\"8840365\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1155/anu/8840365\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/anu/8840365","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

高水平的氮化合物可导致水生生物急性中毒。氨是蛋白质分解的副产品,是淡水环境中最普遍的污染物。水源含盐量的增加会引起养殖池塘内含盐量的波动。这些因素的相互作用可能发生在养殖池中,对水产品的生理和品质产生重大影响。本研究旨在探讨盐度和氨氮胁迫对罗非鱼品质和脂肪酸谱的影响。将鱼分为12个不同的处理组,每个处理组以不同的盐度水平(0、4、8和12 ppt)和不同的氨氮浓度(50%致死浓度[LC50]的0、50% -96 h和30% LC50-96 h)为特征,按因子设计排列。氨氮LC50-96 h为0.86 mg/L。观察到皮质醇和葡萄糖水平与各种盐度处理和氨水平相关的显著增加。4、8和12 ppt盐度处理的胴体蛋白水平与对照处理相比无显著差异。但在50% LC50-96 h氨氮处理下,蛋白质百分比低于对照处理。在盐度处理和氨氮水平(50%和30% LC50-96 h氨氮)下,脂肪、高不饱和脂肪酸(HUFA)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)的百分比显著增加。为了得出结论,我们的评估表明,在不饲养的96小时内,盐度浓度为8 ppt对罗非鱼胴体的质量产生了积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Short-Term Stress and Interaction of Salinity and Ammonia-N Levels, Associated With Food Deprivation on Fatty Acid Profile and Body Composition in Nile Tilapia (Oreochromis niloticus).

High levels of nitrogen compounds can lead to acute toxicity in aquatic organisms. Ammonia, a by-product of protein breakdown, is the most prevalent contaminant in freshwater environments. Increasing salinity in water sources can cause fluctuations in salinity levels within breeding ponds. The interaction of these elements can occur in breeding ponds, significantly impacting the physiology and quality of the aquatic products. The purpose of this study was to examine the relationship between salinity and ammonia-N stress and their effects on the quality and fatty acid profile of tilapia fish (Oreochromis niloticus). The fish were divided into 12 distinct treatment groups, each characterized by varying salinity levels (0, 4, 8, and 12 ppt) and different concentrations of ammonia-N (0, 50% of 50% lethal concentration [LC50]-96 h, and 30% of LC50-96 h) arranged in a factorial design. The calculated LC50-96 h for ammonia-N was 0.86 mg/L. Significant increases were observed in cortisol and glucose levels associated with various salinity treatments and ammonia levels. The levels of carcass protein in the salinity treatments (4, 8, and 12 ppt) did not show any significant differences when compared to the control treatment. However, the protein percentage at 50% of LC50-96 h of ammonia-N was lower than that of the control treatment. In salinity treatments and ammonia levels (50% and 30% of LC50-96 h of ammonia-N), a significant increase in the percentage of lipid, highly unsaturated fatty acids (HUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) was observed. To draw the conclusion, our assessment indicates that a salinity concentration of 8 ppt over a 96-h period without feeding has produced positive effects on the quality of tilapia carcasses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信