Zhongzhen Li, Ngoc Tuan Tran, Ming Zhang, Zhaoxi Li, Wanying Yang, Shuqi Wang, Zhong Hu, Shengkang Li
{"title":"益生元的分离及应用潜力评价——利用尼比亚产丁酸酯菌。","authors":"Zhongzhen Li, Ngoc Tuan Tran, Ming Zhang, Zhaoxi Li, Wanying Yang, Shuqi Wang, Zhong Hu, Shengkang Li","doi":"10.1155/anu/4679037","DOIUrl":null,"url":null,"abstract":"<p><p>Butyrate-producing bacteria (BPB) benefit the health of aquatic animals. This current study aimed to isolate BPB from the intestines of <i>Nibea coibor</i> and assess their probiotic potential. The results showed that nine isolates were obtained in vitro from the gut of <i>N. coibor</i>, including six <i>Clostridium butyricum</i>, two <i>Proteocatella sphenisci</i>, and one <i>Fusobacterium varium</i>. The representative bacteria, <i>C. butyricum</i> CG-3 and <i>P. sphenisci</i> DG-1, which produce high butyrate levels, were further studied for short-chain fatty acid (SCFA) production and antibiotic susceptibility. The effects of BPB singly (CB: basal diet + CG-3 and PS: basal diet + DG-1, at 10<sup>7</sup> CFU/g) or in combination with galactooligosaccharides (GOS) (0.5%) and inulin (0.5%) (CBIG) or D-sorbitol (0.5%) (PSGS) on the growth and health status of <i>N. coibor</i> were investigated. Results showed an increase in growth parameters in the CB, CBIG, and PSGS groups, except for the PS group. Alterations in intestinal microbiota (including diversity, abundance, and function) were observed in four experimental groups (CB, CBIG, PS, and PSGS groups). SCFA contents increased in treated groups; butyrate production was positively related to bacterial abundance. Compared to control, levels of complement C3, complement C4, immunoglobulin M (IgM), transforming growth factor-<i>β</i> (TGF-<i>β</i>), interleukin (IL)-10, IL-1<i>β</i>, and lysozyme (LZM) increased, while malondialdehyde (MDA) decreased in treated groups. Contents of IL-6 (PS and PSGS groups), tumor necrosis factor-alpha (TNF-<i>α</i>) (CB, PS, and PSGS groups), total antioxidant capacity (T-AOC) (CB and PS groups), total superoxide dismutase (T-SOD) (PS group), catalase (CAT) (CB and PSGS groups), and activities of amylase (PS and PSGS groups), trypsin (CB group), and lipase (CBIG group) were increased. Our results suggested the potential use of <i>C. butyricum</i> CG-1 or <i>P. sphenisci</i> DG-1 singly or in combination with prebiotics improved growth and health conditions in <i>N. coibor</i>.</p>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 ","pages":"4679037"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742079/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation and Evaluation of Potential Use of Prebiotics-Utilizing Butyrate-Producing Bacteria in <i>Nibea coibor</i>.\",\"authors\":\"Zhongzhen Li, Ngoc Tuan Tran, Ming Zhang, Zhaoxi Li, Wanying Yang, Shuqi Wang, Zhong Hu, Shengkang Li\",\"doi\":\"10.1155/anu/4679037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Butyrate-producing bacteria (BPB) benefit the health of aquatic animals. This current study aimed to isolate BPB from the intestines of <i>Nibea coibor</i> and assess their probiotic potential. The results showed that nine isolates were obtained in vitro from the gut of <i>N. coibor</i>, including six <i>Clostridium butyricum</i>, two <i>Proteocatella sphenisci</i>, and one <i>Fusobacterium varium</i>. The representative bacteria, <i>C. butyricum</i> CG-3 and <i>P. sphenisci</i> DG-1, which produce high butyrate levels, were further studied for short-chain fatty acid (SCFA) production and antibiotic susceptibility. The effects of BPB singly (CB: basal diet + CG-3 and PS: basal diet + DG-1, at 10<sup>7</sup> CFU/g) or in combination with galactooligosaccharides (GOS) (0.5%) and inulin (0.5%) (CBIG) or D-sorbitol (0.5%) (PSGS) on the growth and health status of <i>N. coibor</i> were investigated. Results showed an increase in growth parameters in the CB, CBIG, and PSGS groups, except for the PS group. Alterations in intestinal microbiota (including diversity, abundance, and function) were observed in four experimental groups (CB, CBIG, PS, and PSGS groups). SCFA contents increased in treated groups; butyrate production was positively related to bacterial abundance. Compared to control, levels of complement C3, complement C4, immunoglobulin M (IgM), transforming growth factor-<i>β</i> (TGF-<i>β</i>), interleukin (IL)-10, IL-1<i>β</i>, and lysozyme (LZM) increased, while malondialdehyde (MDA) decreased in treated groups. Contents of IL-6 (PS and PSGS groups), tumor necrosis factor-alpha (TNF-<i>α</i>) (CB, PS, and PSGS groups), total antioxidant capacity (T-AOC) (CB and PS groups), total superoxide dismutase (T-SOD) (PS group), catalase (CAT) (CB and PSGS groups), and activities of amylase (PS and PSGS groups), trypsin (CB group), and lipase (CBIG group) were increased. Our results suggested the potential use of <i>C. butyricum</i> CG-1 or <i>P. sphenisci</i> DG-1 singly or in combination with prebiotics improved growth and health conditions in <i>N. coibor</i>.</p>\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":\"2025 \",\"pages\":\"4679037\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742079/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1155/anu/4679037\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/anu/4679037","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Isolation and Evaluation of Potential Use of Prebiotics-Utilizing Butyrate-Producing Bacteria in Nibea coibor.
Butyrate-producing bacteria (BPB) benefit the health of aquatic animals. This current study aimed to isolate BPB from the intestines of Nibea coibor and assess their probiotic potential. The results showed that nine isolates were obtained in vitro from the gut of N. coibor, including six Clostridium butyricum, two Proteocatella sphenisci, and one Fusobacterium varium. The representative bacteria, C. butyricum CG-3 and P. sphenisci DG-1, which produce high butyrate levels, were further studied for short-chain fatty acid (SCFA) production and antibiotic susceptibility. The effects of BPB singly (CB: basal diet + CG-3 and PS: basal diet + DG-1, at 107 CFU/g) or in combination with galactooligosaccharides (GOS) (0.5%) and inulin (0.5%) (CBIG) or D-sorbitol (0.5%) (PSGS) on the growth and health status of N. coibor were investigated. Results showed an increase in growth parameters in the CB, CBIG, and PSGS groups, except for the PS group. Alterations in intestinal microbiota (including diversity, abundance, and function) were observed in four experimental groups (CB, CBIG, PS, and PSGS groups). SCFA contents increased in treated groups; butyrate production was positively related to bacterial abundance. Compared to control, levels of complement C3, complement C4, immunoglobulin M (IgM), transforming growth factor-β (TGF-β), interleukin (IL)-10, IL-1β, and lysozyme (LZM) increased, while malondialdehyde (MDA) decreased in treated groups. Contents of IL-6 (PS and PSGS groups), tumor necrosis factor-alpha (TNF-α) (CB, PS, and PSGS groups), total antioxidant capacity (T-AOC) (CB and PS groups), total superoxide dismutase (T-SOD) (PS group), catalase (CAT) (CB and PSGS groups), and activities of amylase (PS and PSGS groups), trypsin (CB group), and lipase (CBIG group) were increased. Our results suggested the potential use of C. butyricum CG-1 or P. sphenisci DG-1 singly or in combination with prebiotics improved growth and health conditions in N. coibor.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.