{"title":"基于细胞提取/ UPLC-MS /MS的桑枝ox-LDL抗动脉粥样硬化化合物鉴定及其机制分析","authors":"Zhihui Jin, Wei Xiang, Xiaowen Shi, Fenglin Jiang, Yanan Jia, Yuansong Zhang, Lingshu Zeng, Xianzhi Huang, Li Xu","doi":"10.1186/s40538-024-00709-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Mulberry twigs, a traditional Chinese medicinal and agricultural byproduct, contain bioactive compounds with anti-atherosclerotic potential. This study aims to identify and evaluate the effects of key compounds in mulberry twig extracts (MTEs) on oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs), with a focus on understanding how these compounds modulate oxidative stress and related signaling pathways.</p><h3>Methods</h3><p>Biospecific cell extraction and ultra-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) were employed to screen and identify these compounds. Protective effects were assessed by measuring cell viability, malondialdehyde (MDA), and superoxide dismutase (SOD) levels, along with detecting intracellular reactive oxygen species (ROS) using 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) and dihydroethidine (DHE) probes. Real-time qPCR and Western blotting were used for mRNA and protein level analysis.</p><h3>Results</h3><p>Two novel active compounds, Kuwanon H and Morusin, and the known Kuwanon G, were identified. They significantly reduced MDA and ROS levels while increasing SOD activity in ox-LDL-treated HUVECs. Kuwanon H was particularly effective, enhancing nuclear factor erythroid 2-related factor 2 (Nrf-2) activity and upregulating its target genes Heme oxygenase-1 (<i>HO-1</i>) and NAD(P)H: quinone oxidoreductase 1 (<i>NQO-1</i>).</p><h3>Conclusion</h3><p>In conclusion, Kuwanon H, Morusin, and Kuwanon G effectively protected HUVECs from ox-LDL-induced oxidative injury, with Kuwanon H showing the strongest protective effects via the Nrf-2/HO-1 signaling pathway. These compounds hold potential in treating atherosclerosis and related oxidative stress diseases.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00709-3","citationCount":"0","resultStr":"{\"title\":\"Identification of compounds against atherosclerosis induced by ox-LDL based on cell extraction/UPLC–MS/MS from mulberry twigs and their mechanistic analysis\",\"authors\":\"Zhihui Jin, Wei Xiang, Xiaowen Shi, Fenglin Jiang, Yanan Jia, Yuansong Zhang, Lingshu Zeng, Xianzhi Huang, Li Xu\",\"doi\":\"10.1186/s40538-024-00709-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Mulberry twigs, a traditional Chinese medicinal and agricultural byproduct, contain bioactive compounds with anti-atherosclerotic potential. This study aims to identify and evaluate the effects of key compounds in mulberry twig extracts (MTEs) on oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs), with a focus on understanding how these compounds modulate oxidative stress and related signaling pathways.</p><h3>Methods</h3><p>Biospecific cell extraction and ultra-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) were employed to screen and identify these compounds. Protective effects were assessed by measuring cell viability, malondialdehyde (MDA), and superoxide dismutase (SOD) levels, along with detecting intracellular reactive oxygen species (ROS) using 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) and dihydroethidine (DHE) probes. Real-time qPCR and Western blotting were used for mRNA and protein level analysis.</p><h3>Results</h3><p>Two novel active compounds, Kuwanon H and Morusin, and the known Kuwanon G, were identified. They significantly reduced MDA and ROS levels while increasing SOD activity in ox-LDL-treated HUVECs. Kuwanon H was particularly effective, enhancing nuclear factor erythroid 2-related factor 2 (Nrf-2) activity and upregulating its target genes Heme oxygenase-1 (<i>HO-1</i>) and NAD(P)H: quinone oxidoreductase 1 (<i>NQO-1</i>).</p><h3>Conclusion</h3><p>In conclusion, Kuwanon H, Morusin, and Kuwanon G effectively protected HUVECs from ox-LDL-induced oxidative injury, with Kuwanon H showing the strongest protective effects via the Nrf-2/HO-1 signaling pathway. These compounds hold potential in treating atherosclerosis and related oxidative stress diseases.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00709-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00709-3\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00709-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of compounds against atherosclerosis induced by ox-LDL based on cell extraction/UPLC–MS/MS from mulberry twigs and their mechanistic analysis
Background
Mulberry twigs, a traditional Chinese medicinal and agricultural byproduct, contain bioactive compounds with anti-atherosclerotic potential. This study aims to identify and evaluate the effects of key compounds in mulberry twig extracts (MTEs) on oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs), with a focus on understanding how these compounds modulate oxidative stress and related signaling pathways.
Methods
Biospecific cell extraction and ultra-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) were employed to screen and identify these compounds. Protective effects were assessed by measuring cell viability, malondialdehyde (MDA), and superoxide dismutase (SOD) levels, along with detecting intracellular reactive oxygen species (ROS) using 2, 7-dichlorodihydrofluorescein diacetate (DCFH-DA) and dihydroethidine (DHE) probes. Real-time qPCR and Western blotting were used for mRNA and protein level analysis.
Results
Two novel active compounds, Kuwanon H and Morusin, and the known Kuwanon G, were identified. They significantly reduced MDA and ROS levels while increasing SOD activity in ox-LDL-treated HUVECs. Kuwanon H was particularly effective, enhancing nuclear factor erythroid 2-related factor 2 (Nrf-2) activity and upregulating its target genes Heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1).
Conclusion
In conclusion, Kuwanon H, Morusin, and Kuwanon G effectively protected HUVECs from ox-LDL-induced oxidative injury, with Kuwanon H showing the strongest protective effects via the Nrf-2/HO-1 signaling pathway. These compounds hold potential in treating atherosclerosis and related oxidative stress diseases.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.