Ruiqian Wang;Chuang Zhang;Wenjun Tan;Yiwei Zhang;Lianchao Yang;Wenyuan Chen;Feifei Wang;Jiandong Tian;Lianqing Liu
{"title":"由嵌入式传感仿生肌肉驱动的软体机器鱼实现自适应多模式游泳","authors":"Ruiqian Wang;Chuang Zhang;Wenjun Tan;Yiwei Zhang;Lianchao Yang;Wenyuan Chen;Feifei Wang;Jiandong Tian;Lianqing Liu","doi":"10.1109/TRO.2025.3532520","DOIUrl":null,"url":null,"abstract":"Fish can adaptively adjust their body kinematics and swimming modes by sensing to realize optimal propulsion. However, most soft robotic fish have an unchangeable swimming mode through simple structure design, making them difficult to adapt to dynamic and complex fluid environments. Here, inspired by the multiple muscle synergy and lateral line sensing function of fish, we developed a soft robotic fish with multiple actuating units and embedded sensing elements. By collaboratively controlling the amplitude and phase of excitation from the multiple flexible actuating units, the soft robotic fish can successfully realize various swimming modes very similar to those of natural fish. Additionally, the embedded flexible sensing elements enable the robotic fish to sense the swimming state and the surrounding fluid environment in real time. The multiple actuation and embedded sensing allow the soft robotic fish to adaptively switch to an optimal swimming mode in a certain fluid environment. The multimode swimming and perception capabilities proposed in this work not only make soft robotic fish more intelligent and adaptable to complex fluid environments, but also contribute to the future implementation of autonomous control capabilities for robotic fish.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"1329-1345"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft Robotic Fish Actuated by Bionic Muscle With Embedded Sensing for Self-Adaptive Multiple Modes Swimming\",\"authors\":\"Ruiqian Wang;Chuang Zhang;Wenjun Tan;Yiwei Zhang;Lianchao Yang;Wenyuan Chen;Feifei Wang;Jiandong Tian;Lianqing Liu\",\"doi\":\"10.1109/TRO.2025.3532520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fish can adaptively adjust their body kinematics and swimming modes by sensing to realize optimal propulsion. However, most soft robotic fish have an unchangeable swimming mode through simple structure design, making them difficult to adapt to dynamic and complex fluid environments. Here, inspired by the multiple muscle synergy and lateral line sensing function of fish, we developed a soft robotic fish with multiple actuating units and embedded sensing elements. By collaboratively controlling the amplitude and phase of excitation from the multiple flexible actuating units, the soft robotic fish can successfully realize various swimming modes very similar to those of natural fish. Additionally, the embedded flexible sensing elements enable the robotic fish to sense the swimming state and the surrounding fluid environment in real time. The multiple actuation and embedded sensing allow the soft robotic fish to adaptively switch to an optimal swimming mode in a certain fluid environment. The multimode swimming and perception capabilities proposed in this work not only make soft robotic fish more intelligent and adaptable to complex fluid environments, but also contribute to the future implementation of autonomous control capabilities for robotic fish.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"1329-1345\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10848317/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10848317/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Soft Robotic Fish Actuated by Bionic Muscle With Embedded Sensing for Self-Adaptive Multiple Modes Swimming
Fish can adaptively adjust their body kinematics and swimming modes by sensing to realize optimal propulsion. However, most soft robotic fish have an unchangeable swimming mode through simple structure design, making them difficult to adapt to dynamic and complex fluid environments. Here, inspired by the multiple muscle synergy and lateral line sensing function of fish, we developed a soft robotic fish with multiple actuating units and embedded sensing elements. By collaboratively controlling the amplitude and phase of excitation from the multiple flexible actuating units, the soft robotic fish can successfully realize various swimming modes very similar to those of natural fish. Additionally, the embedded flexible sensing elements enable the robotic fish to sense the swimming state and the surrounding fluid environment in real time. The multiple actuation and embedded sensing allow the soft robotic fish to adaptively switch to an optimal swimming mode in a certain fluid environment. The multimode swimming and perception capabilities proposed in this work not only make soft robotic fish more intelligent and adaptable to complex fluid environments, but also contribute to the future implementation of autonomous control capabilities for robotic fish.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.