苯甲酸埃维菌素和微塑料通过诱导氧化应激、线粒体功能障碍和蛋白质合成和降解失衡导致鲤鱼骨骼肌萎缩

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wenying Sun, Jing Liu, Xu Shi, Yanju Bi, Huanyi Liu, Tong Xu
{"title":"苯甲酸埃维菌素和微塑料通过诱导氧化应激、线粒体功能障碍和蛋白质合成和降解失衡导致鲤鱼骨骼肌萎缩","authors":"Wenying Sun, Jing Liu, Xu Shi, Yanju Bi, Huanyi Liu, Tong Xu","doi":"10.1021/acs.jafc.4c10479","DOIUrl":null,"url":null,"abstract":"Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario. Nevertheless, the toxicity and mechanism of EMB and MPs on common carp skeletal muscle have not been elucidated. Therefore, we established exposure models for EMB and MPs, and methods such as hematoxylin and eosin staining, immunofluorescence staining, JC-1 staining, and western blotting were employed to investigate the underlying mechanisms of skeletal muscle damage. The results of in vivo and in vitro experiments indicated that exposure to EMB or MPs led to oxidative stress, which in turn caused mitochondrial fusion/fission imbalance (with decreased Mfn1, Mfn2, and OPA1 and increased DRP1), reduced mitochondrial membrane potential, decreased ATP content, reduced protein synthesis, and increased degradation, ultimately resulting in skeletal muscle atrophy. Joint exposure caused more severe damage than single exposure, and the addition of NAC can effectively alleviate skeletal muscle atrophy. In summary, exposure to EMB and/or MPs induced excessive reactive oxygen species (ROS) production, giving rise to mitochondrial dysfunction and an imbalance in skeletal muscle protein synthesis and degradation, ultimately resulting in skeletal muscle atrophy in common carp.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"38 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emamectin Benzoate and Microplastics Led to Skeletal Muscle Atrophy in Common Carp via Induced Oxidative Stress, Mitochondrial Dysfunction, and Protein Synthesis and Degradation Imbalance\",\"authors\":\"Wenying Sun, Jing Liu, Xu Shi, Yanju Bi, Huanyi Liu, Tong Xu\",\"doi\":\"10.1021/acs.jafc.4c10479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario. Nevertheless, the toxicity and mechanism of EMB and MPs on common carp skeletal muscle have not been elucidated. Therefore, we established exposure models for EMB and MPs, and methods such as hematoxylin and eosin staining, immunofluorescence staining, JC-1 staining, and western blotting were employed to investigate the underlying mechanisms of skeletal muscle damage. The results of in vivo and in vitro experiments indicated that exposure to EMB or MPs led to oxidative stress, which in turn caused mitochondrial fusion/fission imbalance (with decreased Mfn1, Mfn2, and OPA1 and increased DRP1), reduced mitochondrial membrane potential, decreased ATP content, reduced protein synthesis, and increased degradation, ultimately resulting in skeletal muscle atrophy. Joint exposure caused more severe damage than single exposure, and the addition of NAC can effectively alleviate skeletal muscle atrophy. In summary, exposure to EMB and/or MPs induced excessive reactive oxygen species (ROS) production, giving rise to mitochondrial dysfunction and an imbalance in skeletal muscle protein synthesis and degradation, ultimately resulting in skeletal muscle atrophy in common carp.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c10479\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c10479","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

农药和塑料在给农业生产和日常生活带来便利的同时,也通过残留的化学物质造成了环境污染。苯甲酸埃维菌素(Emamectin benzoate, EMB)是应用最广泛的杀虫剂之一,它会造成环境污染,危害生物健康。此外,微塑料(MPs)作为一种相对较新的污染物,不仅在水体和水生生物中的残留量不断增加,而且通过吸附其他污染物而加剧污染,导致混合污染情景。然而,EMB和MPs对鲤鱼骨骼肌的毒性及其作用机制尚未阐明。因此,我们建立了EMB和MPs暴露模型,并采用苏木精和伊红染色、免疫荧光染色、JC-1染色、western blot等方法研究骨骼肌损伤的潜在机制。体内和体外实验结果表明,EMB或MPs暴露导致氧化应激,从而引起线粒体融合/裂变失衡(Mfn1、Mfn2和OPA1降低,DRP1升高),线粒体膜电位降低,ATP含量降低,蛋白质合成减少,降解增加,最终导致骨骼肌萎缩。关节暴露比单次暴露损伤更严重,NAC的加入能有效缓解骨骼肌萎缩。综上所述,暴露于EMB和/或MPs会诱导活性氧(ROS)过量产生,导致线粒体功能障碍和骨骼肌蛋白质合成和降解失衡,最终导致鲤鱼骨骼肌萎缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Emamectin Benzoate and Microplastics Led to Skeletal Muscle Atrophy in Common Carp via Induced Oxidative Stress, Mitochondrial Dysfunction, and Protein Synthesis and Degradation Imbalance

Emamectin Benzoate and Microplastics Led to Skeletal Muscle Atrophy in Common Carp via Induced Oxidative Stress, Mitochondrial Dysfunction, and Protein Synthesis and Degradation Imbalance
Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario. Nevertheless, the toxicity and mechanism of EMB and MPs on common carp skeletal muscle have not been elucidated. Therefore, we established exposure models for EMB and MPs, and methods such as hematoxylin and eosin staining, immunofluorescence staining, JC-1 staining, and western blotting were employed to investigate the underlying mechanisms of skeletal muscle damage. The results of in vivo and in vitro experiments indicated that exposure to EMB or MPs led to oxidative stress, which in turn caused mitochondrial fusion/fission imbalance (with decreased Mfn1, Mfn2, and OPA1 and increased DRP1), reduced mitochondrial membrane potential, decreased ATP content, reduced protein synthesis, and increased degradation, ultimately resulting in skeletal muscle atrophy. Joint exposure caused more severe damage than single exposure, and the addition of NAC can effectively alleviate skeletal muscle atrophy. In summary, exposure to EMB and/or MPs induced excessive reactive oxygen species (ROS) production, giving rise to mitochondrial dysfunction and an imbalance in skeletal muscle protein synthesis and degradation, ultimately resulting in skeletal muscle atrophy in common carp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信