Mengli Ding, Zhenjie Xu, Yan Ding, Xianzhen Song, Caifeng Ding
{"title":"具有防污抑菌功能的高效电化学发光生物传感器用于海水中氯霉素的灵敏准确分析","authors":"Mengli Ding, Zhenjie Xu, Yan Ding, Xianzhen Song, Caifeng Ding","doi":"10.1021/acs.analchem.4c05711","DOIUrl":null,"url":null,"abstract":"In marine environmental monitoring, due to the presence of a large number of interfering proteins and bacteria in seawater, it is of great significance to construct an efficient sensing interface with antifouling and antibacterial functions to avoid the aforementioned interferences. On this basis, the zwitterionic hydrogel based on sulfobetaine methacrylate (SBMA) and bovine serum albumin (BSA) was developed as an antifouling and antibacterial coating. The combination of hydration of zwitterions and hydrophilicity of hydrogels endows BSA@PSBMA with good antiadsorption ability, which effectively hinders the adhesion of proteins and bacteria, thereby improving the detection sensitivity of the biosensor. At the same time, the covalent grafting of SBMA and BSA solves the defect of poor stability of individual BSA in complex matrices, improving the stability and service life of the biosensor. In addition, Au@luminol was encapsulated in the zwitterionic hydrogel as an internal standard to realize a one-step integration of antifouling and ratio strategies, which simplifies the construction process of the biosensor. The developed electrochemiluminescence biosensor exhibited good sensitivity and accuracy for chloramphenicol detection, with a wide linear range of 1 pM to 100 nM and a low detection limit of 0.39 pM (<i>S</i>/<i>N</i> = 3), which is suitable for trace detection of antibiotics in seawater.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"13 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Electrochemiluminescence Biosensor with Antifouling and Antibacterial Functions for Sensitive and Accurate Analysis of Chloramphenicol in Seawater\",\"authors\":\"Mengli Ding, Zhenjie Xu, Yan Ding, Xianzhen Song, Caifeng Ding\",\"doi\":\"10.1021/acs.analchem.4c05711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In marine environmental monitoring, due to the presence of a large number of interfering proteins and bacteria in seawater, it is of great significance to construct an efficient sensing interface with antifouling and antibacterial functions to avoid the aforementioned interferences. On this basis, the zwitterionic hydrogel based on sulfobetaine methacrylate (SBMA) and bovine serum albumin (BSA) was developed as an antifouling and antibacterial coating. The combination of hydration of zwitterions and hydrophilicity of hydrogels endows BSA@PSBMA with good antiadsorption ability, which effectively hinders the adhesion of proteins and bacteria, thereby improving the detection sensitivity of the biosensor. At the same time, the covalent grafting of SBMA and BSA solves the defect of poor stability of individual BSA in complex matrices, improving the stability and service life of the biosensor. In addition, Au@luminol was encapsulated in the zwitterionic hydrogel as an internal standard to realize a one-step integration of antifouling and ratio strategies, which simplifies the construction process of the biosensor. The developed electrochemiluminescence biosensor exhibited good sensitivity and accuracy for chloramphenicol detection, with a wide linear range of 1 pM to 100 nM and a low detection limit of 0.39 pM (<i>S</i>/<i>N</i> = 3), which is suitable for trace detection of antibiotics in seawater.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05711\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05711","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
High-Efficiency Electrochemiluminescence Biosensor with Antifouling and Antibacterial Functions for Sensitive and Accurate Analysis of Chloramphenicol in Seawater
In marine environmental monitoring, due to the presence of a large number of interfering proteins and bacteria in seawater, it is of great significance to construct an efficient sensing interface with antifouling and antibacterial functions to avoid the aforementioned interferences. On this basis, the zwitterionic hydrogel based on sulfobetaine methacrylate (SBMA) and bovine serum albumin (BSA) was developed as an antifouling and antibacterial coating. The combination of hydration of zwitterions and hydrophilicity of hydrogels endows BSA@PSBMA with good antiadsorption ability, which effectively hinders the adhesion of proteins and bacteria, thereby improving the detection sensitivity of the biosensor. At the same time, the covalent grafting of SBMA and BSA solves the defect of poor stability of individual BSA in complex matrices, improving the stability and service life of the biosensor. In addition, Au@luminol was encapsulated in the zwitterionic hydrogel as an internal standard to realize a one-step integration of antifouling and ratio strategies, which simplifies the construction process of the biosensor. The developed electrochemiluminescence biosensor exhibited good sensitivity and accuracy for chloramphenicol detection, with a wide linear range of 1 pM to 100 nM and a low detection limit of 0.39 pM (S/N = 3), which is suitable for trace detection of antibiotics in seawater.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.