通过利用四体相互作用的混合变压器图框架加速材料属性预测

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mohammad Madani, Valentina Lacivita, Yongwoo Shin, Anna Tarakanova
{"title":"通过利用四体相互作用的混合变压器图框架加速材料属性预测","authors":"Mohammad Madani, Valentina Lacivita, Yongwoo Shin, Anna Tarakanova","doi":"10.1038/s41524-024-01472-7","DOIUrl":null,"url":null,"abstract":"<p>Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.g., total energy, energy above the convex hull, energy band gap) and data-scarce mechanical properties (e.g., bulk and shear modulus). Our model incorporates four-body interactions, capturing periodicity and structural characteristics. It outperforms state-of-the-art models in 8 materials property regression tasks. Also, this model predicts local atomic environments and global structural features better than several models. Transfer learning addresses mechanical property data scarcity, while separate architecture analysis allows application to materials lacking crystal structure information. Our framework’s interpretability aids in understanding elemental contributions, enhancing material design and discovery. Continuous advancements promise further performance improvements, driving efficient and accurate materials property prediction.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"7 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating materials property prediction via a hybrid Transformer Graph framework that leverages four body interactions\",\"authors\":\"Mohammad Madani, Valentina Lacivita, Yongwoo Shin, Anna Tarakanova\",\"doi\":\"10.1038/s41524-024-01472-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.g., total energy, energy above the convex hull, energy band gap) and data-scarce mechanical properties (e.g., bulk and shear modulus). Our model incorporates four-body interactions, capturing periodicity and structural characteristics. It outperforms state-of-the-art models in 8 materials property regression tasks. Also, this model predicts local atomic environments and global structural features better than several models. Transfer learning addresses mechanical property data scarcity, while separate architecture analysis allows application to materials lacking crystal structure information. Our framework’s interpretability aids in understanding elemental contributions, enhancing material design and discovery. Continuous advancements promise further performance improvements, driving efficient and accurate materials property prediction.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01472-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01472-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器学习促进了无机材料性质的快速预测,但特定性质的数据稀缺和捕获热力学稳定性仍然具有挑战性。我们提出了一个利用基于组合和基于晶体结构的图神经网络架构的框架,并结合迁移学习方案。这种方法可以准确预测与能量相关的特性(例如,总能量、凸壳以上的能量、能带间隙)和数据稀缺的力学特性(例如,体积和剪切模量)。我们的模型包含四体相互作用,捕获周期性和结构特征。它在8个材料属性回归任务中优于最先进的模型。此外,该模型对局部原子环境和全局结构特征的预测效果优于几种模型。迁移学习解决了机械性能数据的稀缺性,而单独的体系结构分析允许应用于缺乏晶体结构信息的材料。我们的框架的可解释性有助于理解元素的贡献,增强材料的设计和发现。不断的进步承诺进一步的性能改进,推动高效和准确的材料性能预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerating materials property prediction via a hybrid Transformer Graph framework that leverages four body interactions

Accelerating materials property prediction via a hybrid Transformer Graph framework that leverages four body interactions

Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.g., total energy, energy above the convex hull, energy band gap) and data-scarce mechanical properties (e.g., bulk and shear modulus). Our model incorporates four-body interactions, capturing periodicity and structural characteristics. It outperforms state-of-the-art models in 8 materials property regression tasks. Also, this model predicts local atomic environments and global structural features better than several models. Transfer learning addresses mechanical property data scarcity, while separate architecture analysis allows application to materials lacking crystal structure information. Our framework’s interpretability aids in understanding elemental contributions, enhancing material design and discovery. Continuous advancements promise further performance improvements, driving efficient and accurate materials property prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信